Skip to main content

Notes

Olympiad

  • Symmetric Polynomials I wrote notes for Symmetric polynomials.
  • Newton Sums (Sym Poly part 2) This was the continuation of the Symmetric Polynomials post and talked about Newton sums. 
     
  • My first own problem set This was my first problem set. All the problems are my own, though ideas are probably not new. The problems are of the level AMC-8 or AMC-10 level.


  • School notes and more problem sets The post where I send more notes( handwritten). And some more problem sets compilation.


  • Vectors The basic introduction to vectors. It covers all the fundamentals!


  • Let's complex bash part 1 A series where I am  posting my notes to "Complex number in geometry."

  • Let's complex bash part 2 The second post of the series.


  • Probability is global Olympiad Notes on probability with $17+18=35$ problems.


  • Expected value Continuing from "the probability is global", we do expected value along with $16$ problems.


  • Recurrence Relations  Olympiad Notes on Recurrence Relations where almost each problem is s different topic and makes us learn something new.
    We have $14$ problems to solve.

  • Graph theory part 1 Olympiad notes on Graph theory. In this post, I talk about Degrees, degrees sequence, etc with $8$ problems and many theorems.


  • Graph Theory part 2 Olympiad notes on Graph theory. In this post, I talk about the Euler path, Ore's Theorem, Hamiltonian, etc with $8$ problems and many theorems.

  • Graph Theory part 3 Olympiad notes on Graph theory. In this post, I talk about planar graphs with $6$ problems and theorems.

  • Graph Theory Part 4 Olympiad notes on Graph theory. In this post, I talk about Independent sets and covering sets

GRADE 10

Life processes

Heredity And evolution

Our Environment

How do organisms reproduce

Outcomes of democracy

Political Parties



Comments

  1. Hi! I think you should link your complex number and vectors notes blog posts too ! Would be helpful to find.

    ReplyDelete
    Replies
    1. whoopsie I need to complete my series of that. Thanks for reminding!

      Delete
  2. Hey Sunaina! I'm a fellow Indian and another math-lover (find me on MSE as Spectre)
    Just letting you know that I'm grateful to you for having provided me a few problems to try. As a reward, here's a book of problems by a famous mathematician (not sure if you've ever tried it before... : https://www.isinj.com/mt-aime/250%20Problems%20in%20Elementary%20Number%20Theory%20-%20Sierpinski%20(1970).pdf

    ReplyDelete
    Replies
    1. OMG woah! So happy :D.. This never happened to me, thank you so much for the book! I really love it! I will sure try it!

      Delete
    2. The thing is that you found time to learn what you love in math. Me still hanging back due to the restrictions around me (perhaps my own problems, no idea...) but still I somehow caught up with a small bit of the basics... I feel jealous of your capability :D...

      Delete

Post a Comment

Popular posts from this blog

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots ...

IMO 2023 P2

IMO 2023 P2 Well, IMO 2023 Day 1 problems are out and I thought of trying the geometry problem which was P2.  Problem: Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$. Well, here's my proof, but I would rather call this my rough work tbh. There are comments in the end! Proof Define $A'$ as the antipode of $A$. And redefine $P=A'D\cap (ABC)$. Define $L=SP\cap (PDB)$.  Claim1: $L-B-E$ collinear Proof: Note that $$\angle SCA=\angle SCB-\angle ACB=90-A/2-C.$$ So $$\angle SPA=90-A/2-C\implies \ang...

IMO Shortlist 2021 C1

 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\forall x,y\in T,(x,y)=d,$ where $d$ is constant. Fix a random element $a$. Note that $(x,a)|a$. So $(x,a)\le a$.Since there are infinite elements and finite many possibilities for the gcd (atmost $a$). So $\exists$ set $T$ which is infinite such that $\forall b_1,b_2\in T$ $$(a,b_1)=(a,b_2)=d.$$ Note that if $(b_1,b_2)\ne d$ then we get a contradiction as we get a set satisfying the proble...

Problems with meeting people!

Yeah, I did some problems and here are a few of them! I hope you guys try them! Putnam, 2018 B3 Find all positive integers $n < 10^{100}$ for which simultaneously $n$ divides $2^n$, $n-1$ divides $2^n - 1$, and $n-2$ divides $2^n - 2$. Proof We have $$n|2^n\implies n=2^a\implies 2^a-1|2^n-1\implies a|n\implies a=2^b$$ $$\implies 2^{2^b}-2|2^{2^a}-2\implies 2^b-1|2^a-1\implies b|a\implies b=2^c.$$ Then simply bounding. USAMO 1987 Determine all solutions in non-zero integers $a$ and $b$ of the equation $$(a^2+b)(a+b^2) = (a-b)^3.$$ Proof We get $$ 2b^2+(a^2-3a)b+(a+3a^2)=0\implies b = \frac{3a-a^2\pm\sqrt{a^4-6a^3-15a^2-8a}}{4}$$ $$\implies a^4-6a^3-15a^2-8a=a(a-8)(a+1)^2\text{ a perfect square}$$ $$\implies a(a-8)=k^2\implies a^2-8a-k^2=0\implies \implies a=\frac{8\pm\sqrt{64+4k^2}}{2}=4\pm\sqrt{16+k^2}. $$ $$ 16+k^2=m^2\implies (m-k)(m+k)=16.$$ Now just bash. USAMO 1988 Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1...

Challenging myself? [Jan 15-Jan 27]

Ehh INMO was trash. I think I will get 17/0/0/0-1/3-5/10-14, which is def not good enough for qualifying from 12th grade. Well, I really feel sad but let's not talk about it and focus on EGMO rather.  INMO 2023 P1 Let $S$ be a finite set of positive integers. Assume that there are precisely 2023 ordered pairs $(x,y)$ in $S\times S$ so that the product $xy$ is a perfect square. Prove that one can find at least four distinct elements in $S$ so that none of their pairwise products is a perfect square. I will use Atul's sol, cause it's the exact same as mine.  Proof: Consider the graph $G$ induced by the elements of $S$ and edges being if the products are perfect squares. Note that if $xy = a^2$ and $xz = b^2$, then $yz = \left( \frac{ab}{x} \right)^2$, since its an integer and square of a rational number its a perfect square and so $yz$ is an edge too. So the graph is a bunch of disjoint cliques, say with sizes $c_1, c_2, \cdots, c_k$. Then $\sum_{i=1}^k c_i^2 = 2023$, which ...

Some random problems

  I know, I know. Different font indeed. I have deleted a few of my MSE answers. I felt they weren't that good in quality. And a few questions are from my prev aops account which I have deactivated now. I also have posted 10 IOQM types of problems. These can be used while preparing for IOQM. Problem: Prove that $\dfrac{ab}{c^3}+\dfrac{bc}{a^3}+\dfrac{ca}{b^3}> \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$, where $a,b,c$  are different positive real numbers.  Proof: Note that by AM-GM $$\frac{ab}{c^3}+\frac{bc}{a^3}\ge \frac{2b}{ac}$$ and we also have $$\frac {b}{ac}+\frac{c}{ab}\ge \frac{2}{a}$$. Hence, $$\sum_{cyc}\frac{ab}{c^3}\ge\sum_{cyc}\frac{b}{ac}\ge\sum_{cyc}\frac{1}{a}$$ where everything we got is by applying AM-GM on $2$ terms and then dividing by $2$. USA TST 2007: Triangle $ABC$ which is inscribed in circle $\omega$. The tangent lines to $\omega$ at $B$ and $C$ meet at $T$. Point $S$ lies on ray $BC$ such that $AS$ is perpendicular to $AT$. Points $B_1$ and $C_1...

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I did...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...