Welcome back! I tried the previous year INMO problems. And yes, I did a lot of them, here are a few! Here are the problems! ( they are kept in random order) [2008 P2]: Find all triples $ \left(p,x,y\right)$ such that $ p^x=y^4+4$, where $ p$ is a prime and $ x$ and $ y$ are natural numbers. [some INMO]: Find all $m,n\in\mathbb N$ and primes $p\geq 5$ satisfying $$m(4m^2+m+12)=3(p^n-1).$$ [2015 P3] Find all real functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x^2+yf(x))=xf(x+y)$. [2005 P6]: Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that\[ f(x^2 + yf(z)) = xf(x) + zf(y) , \]for all $x, y, z \in \mathbb{R}$. [2012 P6] Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function satisfying $f(0) \ne 0$, $f(1) = 0$ and $(i) f(xy) + f(x)f(y) = f(x) + f(y)$ $(ii)\left(f(x-y) - f(0)\right ) f(x)f(y) = 0 $ for all $x,y \in \mathbb{Z}$, simultaneously. $(a)$ Find the set of all possible values of the function $f$. $(b)$ If $f(10) \ne 0$ and $f(2) = 0$, find ...
Welcome to the crazy land of absurdness. An olympiad math blog run by an absurd math enthusiast