I know, I know. Different font indeed. I have deleted a few of my MSE answers. I felt they weren't that good in quality. And a few questions are from my prev aops account which I have deactivated now. I also have posted 10 IOQM types of problems. These can be used while preparing for IOQM. Problem: Prove that $\dfrac{ab}{c^3}+\dfrac{bc}{a^3}+\dfrac{ca}{b^3}> \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$, where $a,b,c$ are different positive real numbers. Proof: Note that by AM-GM $$\frac{ab}{c^3}+\frac{bc}{a^3}\ge \frac{2b}{ac}$$ and we also have $$\frac {b}{ac}+\frac{c}{ab}\ge \frac{2}{a}$$. Hence, $$\sum_{cyc}\frac{ab}{c^3}\ge\sum_{cyc}\frac{b}{ac}\ge\sum_{cyc}\frac{1}{a}$$ where everything we got is by applying AM-GM on $2$ terms and then dividing by $2$. USA TST 2007: Triangle $ABC$ which is inscribed in circle $\omega$. The tangent lines to $\omega$ at $B$ and $C$ meet at $T$. Point $S$ lies on ray $BC$ such that $AS$ is perpendicular to $AT$. Points $B_1$ and $C_1...
Welcome to the crazy land of absurdness. An olympiad math blog run by an absurd math enthusiast