Well..
I was asked to prove Newton Sums, so since I latexed the proof, why not post it :P.
Newton Sums: Consider a polynomial P(x) of degree n, with roots x_1,x_2,\dots,x_n
P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0.
a_np_1 + a_{n-1} = 0
\vdots
(Define a_j = 0 for j<0.)
Proof : Note that p_1=x_1+x_2+\dots+x_n=\frac{-a_{n-1}}{a_n}\implies \boxed{a_n\cdot p_1+a_{n-1}=0}
Note that p_2=x_1^2+\dots+x_n^2=(x_1+\dots+x_n)^2-2(x_1\cdot x_2+x_1\cdot x_3+\dots+x_{n-1}\cdot x_{n})=
Note that p_3=x_1^3+\dots+x_n^3=(x_1^2+\dots+x_n^2)(x_1+\dots+x_n)-(x_1\cdot x_2+x_1\cdot x_3+\dots+
p_{k+1}=(a_1^k+a_2^k+\dots+a_n^k)(a_1+\dots+a_n)-(a_1^{k-1}+\dots+a_n^{k-1})(a_1\cdot a_2+\dots +a_{n-1}a_{n})+(a_1^{k-2}+
=p_k\cdot \frac{-a_{n-1}}{a_n}-p_{k-1}\cdot \frac{a_{n-2}}{a_n}+p_{k-2}\cdot \frac{-a_{n-3}}{a_n}+\dots+-(-1)^{k+1}\frac{a_{n-k}}{a_n}\cdot (k+1)\implies
\boxed{ p_{k+1}\cdot a_n+p_k\cdot (a_{n-1})+\dots + (k+1)(a_{n-k-1})}=0
Nice
ReplyDeleteWaoooo nicee ! Idk why I saw this post now 😂.
ReplyDeleteIt actually came in my mail yesterday :p.
But anyways, the small notes on Newton sums were nice 🙂