Skip to main content

Posts

Showing posts from January, 2024

IMO Shortlist 2022 C1

  Today we shall try IMO Shortlist $2022$ C1. A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and$$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$ We claim that the answer is $\boxed{506}$. $506$ is the upper bound. Just consider the sequence $$+1,-1,-1,+1,+1,-1,-1,+1\dots,-1,-1,+1,+1,-1.$$ Here $1, -1, -1, 1$ is repeated $505$ times and $1,-1$ is concatted to it. Now,our sequence would be $a_1,a_3,a_4,a_5,a_7,\dots$ which on summing would give $506$. And clearly, this would give the upper bound. Now, we show that $506$ is attainable by every sequence. WLOG there are at least $1011$ positive numbers in the sequence. Then we choose $+1$ whenever we can. Let the sequence be $c_1,b_1,\dots, c_n,b_n$ where $c_i$ are the

IMO Shortlist 2021 C1

 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\forall x,y\in T,(x,y)=d,$ where $d$ is constant. Fix a random element $a$. Note that $(x,a)|a$. So $(x,a)\le a$.Since there are infinite elements and finite many possibilities for the gcd (atmost $a$). So $\exists$ set $T$ which is infinite such that $\forall b_1,b_2\in T$ $$(a,b_1)=(a,b_2)=d.$$ Note that if $(b_1,b_2)\ne d$ then we get a contradiction as we get a set satisfying the problem stateme

Some Geometry Problems for everyone to try!

 These problems are INMO~ish level. So trying this would be a good practice for INMO!  Let $ABCD$ be a quadrilateral. Let $M,N,P,Q$ be the midpoints of sides $AB,BC,CD,DA$. Prove that $MNPQ$ is a parallelogram. Consider $\Delta ABD$ and $\Delta BDC$ .Note that $NP||BD||MQ$. Similarly, $NM||AC||PQ$. Hence the parallelogram. In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$. Note that $\Delta ADB\sim \Delta CDA$. So by similarity, we have $$\frac{AD}{BD}=\frac{CD}{AD}.$$ In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$. Let $D\in CA$, such that $AD = AB$.Note that $BD||AS$. So by the Thales’ Proportionality Theorem, we are done! Given $\Delta ABC$, construct equilateral triangles $\Delta BCD,\Delta CAE,\Delta ABF$ outside of $\Delta ABC$. Prove that $AD=BE=CF$. This is just congruence. Note that