Ehh INMO was trash. I think I will get 17/0/0/0-1/3-5/10-14, which is def not good enough for qualifying from 12th grade. Well, I really feel sad but let's not talk about it and focus on EGMO rather.
INMO 2023 P1
Let $S$ be a finite set of positive integers. Assume that there are precisely 2023 ordered pairs $(x,y)$ in $S\times S$ so that the product $xy$ is a perfect square. Prove that one can find at least four distinct elements in $S$ so that none of their pairwise products is a perfect square.
I will use Atul's sol, cause it's the exact same as mine.
Proof: Consider the graph $G$ induced by the elements of $S$ and edges being if the products are perfect squares. Note that if $xy = a^2$ and $xz = b^2$, then $yz = \left( \frac{ab}{x} \right)^2$, since its an integer and square of a rational number its a perfect square and so $yz$ is an edge too. So the graph is a bunch of disjoint cliques, say with sizes $c_1, c_2, \cdots, c_k$. Then $\sum_{i=1}^k c_i^2 = 2023$, which implies $k \geqslant 4$ since $2023 \equiv 7 \pmod 8$. Now pick one element from each of these cliques and it works.
I am starting with Harmonic DGX:
A few stuffs to note for me.
2016 G2
Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$.
Proof: Define $T$ as the mixtillinear in touch point. Define $S$, $P$ as the midpoint of major arc, minor arc $BC$.
Claim: $BFIT, CEIT$ harmonic
Proof: Introduce the midpoint of arc $AB, BC$ ( say $M_c,M_b$) and angle chase. We have $M_cB,M_cI$ tangent to $BFIT$. And we have $T-F-M_c$.
Define $H=ST\cap BC$.
Claim: $AH,CF,BE$ concur
Proof: By ceva, we just have to show $$\frac{BF}{CE}=\frac{BH}{CH}.$$
For which, we use the fact that $BFIT, CEIT$ are harmonic.
Claim: $SX,EF,BC,TP$ concur
Proof: Note that $(Z,H;B,C)=-1$ where $Z=EF\cap BC$. Moreover, we know that $$\angle BTH=HTC$$ and $\angle HTP=90\implies Z-T-P$.
As $SH\perp ZP, ZH\perp PS\implies X-H-P$.
Since $(S,P;B,C)=-1$, we get $(X,T;B,C)=-1$.
Now define $A'$ as the intersection of the parallel line through $A$ to $BC$ and $(ABC)$.
Claim: $T-D-A'$
Proof: We have it because $$\angle BTA=CTD$$ and $BA=CA'$.
Note that $(AM\cap (ABC),A';B,C)=-1$ ( just reflect over perpendicular bisector of $BC$) . But we have $(X,T;B,C)=(XD\cap (ABC),A';B,C)=-1$. So $ XD\cap (ABC)=AM\cap (ABC)$.
This was a pretty nice problem (sort of config based).. but I would recommend to go through it in future, cause pretty nice config geo!
USA EGMO TST 2023 P1
Let $ABC$ be a triangle with $AB+AC=3BC$. The $B$-excircle touches side $AC$ and line $BC$ at $E$ and $D$, respectively. The $C$-excircle touches side $AB$ at $F$. Let lines $CF$ and $DE$ meet at $P$. Prove that $\angle PBC = 90^{\circ}$.
Proof: If $BC=a$. Note that $CE=CD=\frac{AB+BC+CA}{2}-C=a$. So $C$ is the centre of $(BDE)$ and hence $\angle BDE=90$. So $C$ is midpoint of $BE$.
Define $I$ as the incentre of $ABC$. Let the incircle touch $CA$ at $M$, $BC$ at $L$. Let $M$ antipode be $N$ and $L$ antipode be $J$.
Claim:$B-N-J-D$ collinear ( By symmetry we also get $C-J-F$)
Proof: By homothety, $B-N-D$. Note that if $\angle BCA=2\theta$, we get $\angle BED=\theta\implies CI||EA$.
We have $\angle EBD=90-\theta$ and $\angle ILM =\theta\implies \Delta LMJ \text{ is similar to } \Delta EDB$.
Note that $\angle MJN=90$. Since $JL\perp BC\implies \angle LJB=90-\angle LBJ=\theta$. And $\angle LJN=\angle JLM=\theta\implies J-N-B$.
Define $P'$ as the intersection of the perpendicular at $B$ to $BC$ and $CE$. Define $C'=CI\cap BC$. Since $LJ||BP'$ and $I$ is midpoint of $NJ\implies C'$ is midpoint of $BP'$.
Now define $Y$ as midpoint of $NJ$. Note that $C-I-Y-C'$ ( as $CI$ is perpendicular bisector of $LM$ and $LMNJ$ rectangle).
Note that $\Delta BCY$ is similar to $\Delta BED$. So $E-D-P'$. So $P'=P$. And we are done!
USAJMO 2011 P5
Points $A,B,C,D,E$ lie on a circle $\omega$ and point $P$ lies outside the circle.
The given points are such that
(i) lines $PB$ and $PD$ are tangent to $\omega$,
(ii) $P, A, C$ are collinear,
and (iii) ${DE} \parallel {AC}$.
Prove that ${BE}$ bisects ${AC}$.
Proof: Note that $$(A,C;B,D)=-1\text { projecting through } E \text { on } AC\implies (A,C; BE\cap AC, P_{\infty})=-1.$$ Hence $BE\cap AC$ is the midpoint of $AC$. Hence $BE$ bisects $AC$.
APMO 2013
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of ${AC}$ such that ${PB}$ and ${PD}$ are tangent to $\omega$. The tangent at $C$ intersects ${PD}$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between ${AQ}$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.
Proof: Note that $$-1=(A,E;C,D)=(A,RE\cap \omega; C,D)$$ But we know $$(A,C;B,D)=-1\implies RE\cap \omega=B.$$
China TST 2002
Let $ABCD$ be a quadrilateral. Point $E$ is the intersection of lines $AB$ and $CD$
while point $F$ is the intersection of lines $BC$ and $DA$. The diagonals of the quadrilateral meet at $P$, and point $O$ is the foot from $P$ to $\overline{EF}$.
Prove that $\angle BOC = \angle AOD$.
Proof: Let $DB\cap FE=X, FP\cap DC=Y$. Note that $$-1=(D,C;Y,E)=(D,B;P,Y)\implies PO\text{ bisects } \angle DOB.$$ Similarly we get $PO \text{ bisects } \angle AOC.$ Hence $\angle BOC = \angle AOD$.
ELMO Shortlist 2019 G1
Let $ABC$ be an acute triangle with orthocenter $H$ and circumcircle $\Gamma$.
Let $BH$ intersect $AC$ at $E$, and let $CH$ intersect $AB$ at $F$. Let $AH$ intersect $\Gamma$ again at $P \neq A$. Let $PE$ intersect $\Gamma$ again at $Q \neq P$.
Prove that $BQ$ bisects segment $\overline{EF}$.
Proof: Let the parallel line through $B$ to $EF$ intersect $(ABC)$ at $X.$ Let $EF\cap BC=T, TA\cap (ABC)=R.$ Then note that $(AREF), R-E-X.$
So $$-1=(B,C;T,D)\text{ projecting through } A \text { on } (ABC)$$ $$\implies -1= (BC; RP)\text{ projecting through } A \text { on } (ABC)\text{ projecting through } E \text { on } (ABC)$$ $$\implies (BE\cap (ABC)A;XQ)=-1\text{ projecting through } E \text { on } (ABC)\implies (EF;\infty_{EF}BQ\cap EF)=-1.$$
We have $$FM\cdot FX=MA\cdot MD=MY\cdot MF\implies EYXF\text{ is cyclic}.$$
The following problem was done with Atul and Archit :D
SAGF part 1 P2
In an acute-angled triangle, $ABC$ $w$ is a circumscribed circle, and $O$ is inside the triangle and $OB = OC$. The point $D$ is selected on the side of $AB$,so that $OD \parallel BC$. The straight line $AO$ repeatedly intersects the circles $w$ and $(COD)$ at the points $A',P$, respectively. $M$ is the middle of the side of $BC$. Circle $(MAA')$ intersects the line $BC$ at the point $L$. The straight line $AL$ repeatedly intersects the circle $w$ at the point $K$. Prove that $\angle APK = \angle AA'M$
Proof: We start with the following lemma.
Lemma:Let $ABC$ be a triangle, $O$ be a point on the perpendicular bisector of $BC$. Let $D,E$ denote the intersection of line parallel $AB,AC$. Define $P=(DOC)\cap (EOP).$ Then points $A,O$ and $P$ are collinear.
Proof: Invert about $O$. The inverted problem is: Give $ABC$ triangle with $O$ be a point on the perpendicular bisector of $BC$. Let $D,E$ denote the intersection of line parallel $(AOB),(AOC)$. We have to show that $AO, CD,BE$ concur.
Note that as $OB=OC$ we have$$\angle DAB=\angle DOB=\angle EOC=\angle EAC.$$Define $\ell_1$ as the reflection of $DB$ over the angle bisector of $\angle B$ and $\ell_2$ as the reflection of $CE$ over the angle bisector of $\angle C$. We claim that $\ell_1 \parallel \ell_2 \parallel OP$
To see this,$$\angle AOD=\theta=\angle ABD\implies \angle AOE=180-\theta=\angle ACE.$$Let $X$ be on $\ell_1$ such that $D$ and $X$ are on opposite sides of $AB$. Similarly, define $Y$ be on $\ell_2$ such that $E$ and $Y$ are on opposite sides of $AC$. So note that$$\angle CBX=\theta,\angle BCY=180-\theta\implies \ell_1 \parallel \ell_2.$$
Note that $\angle ABX=\angle B+\theta$. And$$180-\angle OAB-180-\angle ODB=\angle DBC=\angle B+\theta\implies OA||l_1||l_2.$$So $BX\cap CY=P_{\infty}, A-O-P_{\infty}\text{ collinear}.$ By Jacobi theorem, we get $A-O-P_{\infty},CD,BE$ concur. Hence, we get $A-O-P$ collinear.
Redefine the problem in the following way: Define trinagle $ABC$, $O$ be a point on the perpendicular bisector of $BC$. Let $D,F$ denote the intersection of line parallel $AB,AC$. Define $P=(DOC)\cap (EOP).$ Define $M$ as the midpoint of $BC$. Define $I=AB\cap (DOCP), H=AC\cap (BOFP)$. Define $L'= BC\cap IH$. Define $E=AO\cap BC, A'=AO\cap (ABC)$. We will shwo that $L',A',M,A$ cyclic i.e $L'=L$. Note that $(L',E;B,C)=-1$. And hence we have$$ME\cdot EL'=EC\cdot EB=AE\cdot EA'\implies L'MAA'\text{ is cyclic}\implies L'=L.$$
Due to this, we get that $K$ is the miquel point of $BCHI$(as $K=(ABC)\cap AL$). Since $K$ is the miquel point, we have $(ABCK),(AIHK),(KCHL)$ cyclic. We actually don't need all the cyclicities, but we'll prove them because why not.
Note that $(B,C;E,L)=-1\implies LB\cdot LC=LM\cdot LE.$ But $LB\cdot LC=LA\cdot LK\implies AKEM$ is cyclic.
$P\in (AKHI)$ as$$\angle IPH=\angle IPO+\angle OPH=\angle ADO+\angle AFO=180-\angle A\implies P\in(AKI).$$
Define $G=DF\cap AL$, then $KFGH$ cyclic, this is because$$\angle KGF=\angle KLC=\angle KLB=\angle KIB=\angle KHC.$$The last equality follows as $K$ is the spiral center taking $BI$ to $CH$.
So by PoP, we get$$AK\cdot AG=AF\cdot AH=AO\cdot AP=AD\cdot AI$$which gives $KDIG,KGOP$ cyclic.
$EKLP$ cyclic as$$\angle KLE=\angle KLB=\angle KIB=\angle KIA=\angle KPA=\angle KPE.$$
$AKME$ cyclic as$$LM\cdot LE=LB\cdot LC=LA\cdot LK\implies AKME\text{ is cyclic}.$$
Now to finish proving $\angle APK=\angle AA'M$, note that$$\angle APK=\angle AIK=\angle BIK=\angle BLK=\angle MLA=\angle AA'M$$so we're done.
GOTEEM 2020
Let $ABC$ be a scalene triangle. The incircle of $\triangle ABC$ is tangent to sides ${BC}$, ${CA}$, ${AB}$ at $D$, $E$, $F$, respectively. Let $G$ be a point on the incircle of $\triangle ABC$ such that $\angle AGD = 90^\circ$. If lines $DG$ and $EF$ intersect at $P$,prove that $AP$ is parallel to $BC$.
Proof: Let $D'$ be the antipode of $D$ wrt incircle. Note that $$(D',G;E,F)=-1\text { projecting through } D \text { on } EF\implies (DD'\cap EF, P;E,F)=-1.$$ Let $M$ be the midpoint of $BC$. Define $X=EF\cap BC$. We have $EF,DD',AM$ concur at say $R$. Projecting through $R$ on $BC$, $$-1=(R,P;E,F)=(M,PA\cap BC;B,C)\implies PA||BC.$$
AHH I have more to post but I will post in different blogpost! Bie people!
I thoroughly enjoyed reading your latest blog post! Your commitment to challenging yourself is truly inspiring. It's remarkable how you've set specific goals from January 15 to January 27. The way you share your journey adds a personal touch, making it relatable and engaging. I appreciate the transparency about the difficulties you encountered and the strategies you employed to overcome them. It's motivating to see someone embrace growth with such enthusiasm.
ReplyDelete