This is just such an unfair blog.
Like if one goes through this blog, one can notice how dominated Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!
These problems are randomly from A Beautiful Journey through Olympiad Geometry. Also perhaps I will post geo after March, because I am studying combi.
Problem: Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral.
Solution: Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral.
Problem: A convex quadrilateral $ABCD$ is inscribed in a circle with center $O$. The diagonals $AC$, $BD$ of $ABCD$ meet at $P$. Circumcircles of $\triangle ABP$ and $\triangle CDP$ meet at $P$ and $Q$ ($O$, $P$ and $Q$ are pairwise distinct). Show that $\angle OQP = 90^{\circ}.$
Solution: ( Thenku JIB! ) We will complete the quad and introduce Miquel point $M$.
Let $AD\cap BC=F $ and $CD\cap BA=G$ , let $M$ be the miquel point of quad $ABCD.$
Note that $QP,CD,AB$ concur at $G$ because of radical axis lemma. Also it is well known that $O,P,M$ are collinear and $OM\perp FG.$ By POP on $G$ we get $GP\cdot GQ=GA\cdot GB=GM\cdot GF\implies FMPQ $ is cyclic. So $\angle PQF=90.$
Now by Brokard's theorem , we already know that $O$ is the orthocentre of $FPG.$ So we know that $PG\perp FO $ at a point say $Q'.$ But then $Q'$ has to be $Q$, since there can't be two points on the same liken $PG$ such that $\angle FQG=\angle FQ'G=90.$
Hence $Q\in OF.$ So $\angle OQP=90^{\circ}.$
Problem: Let the incircle and the $A$-mixtilinear incircle of a triangle $ABC$ touch $AC$, $AB$ at $E$, $F$ and $K$, $J$ respectively. $EF$ and $JK$ meet $BC$ at $X$, $Y$ respectively. The $A$-mixtilinear incircle touches the circumcircle of $ABC$ at $T$ and the reflection of $A$ in $O$, the circumcenter, is $A'$. The midpoint of arc $BAC$ is $M$. Prove that the lines $TA'$, $OY$, $MX$ are concurrent.
Solution: (With JIB and RG) Let $G$ be the intouch miquel point i.e $(ABC)\cap (AI).$ It is well known that $A,G,Y$ are collinear. Also if $M_A$ is the midpoint of minor arc $BC$, then we also have $M_A,T,Y$ collinear.
Then if $M$ is the midpoint of $BC$ containing $A$, then we have $X,G,M$ collinear.
Define $L:=TA' \cap GM.$ Then enough to show that $ L,Y,O$ is collinear, which is just Pascal on $M_AMGAA'T$
Problem: Let $ABC$ be a triangle and $O$ be its circumcenter. Let $T$ be the intersection of the circle through $A$ and $C$ tangent to $AB$ and the circumcircle of $\Delta BOC.$ Let $K$ be the intersection of the lines $TO$ and $BC.$ Prove that $KA$ is tangent to the circumcircle of $\Delta ABC.$
Solution: We will use $ = \sqrt{bc/2}$ inversion followed by reflection wrt Angle bisector centred at $A.$
Then it is well known that this inversion takes $B$ and $C$ to $M_{CA}$ and $M_{BA}$, $O$ to $H_A.$ The circle through $A$ and $C$ tangent to $AB$ becomes parallel line to $BA$ from $M_{CA}$ and $(BOC)$ goes to $(N_9).$
Hence $T$ goes to $M_{BC}.$ Now as $K=BC\cap OT$, we get $K'=(AM_{CA}M_{BA})\cap (AM_{BC}M_{CA}).$
In the question we were asked to show that $\angle OAK=90.$
So after inverting, it's enough to show that $\angle H_AAK'=90.$
Problem: Given $ABC$ a triangle, define $K':=(AM_{BA}M_{CA})\cap (AH_AM_{BC}).$ Then prove that $\angle H_AMK'=90.$
Proof: Note that $O\in (AM_{BA}M_{CA}).$ So $\angle AK'O=90.$ Also $M_{BC}K'A=90.$ Hence $ M_{BC},O,K'$ are collinear. But we have $OM_{BC}\perp BC.$ Hence $AK'II BC\implies \angle H_AAK'=90.$
Problem: Let $MN$ be a line parallel to the side $BC$ of a triangle $ABC$, with $M$ on the side $AB$ and $N$ on the side $AC$. The lines $BN$ and $CM$ meet at point $P$. The circumcircles of $\triangle BMP$ and $\triangle CNP$ meet at two distinct points $P$ and $Q$. Prove that $\angle BAQ = \angle CAP$.
Solution: Claim: $AP\cap BC=M_{BC},$ where $M_{BC}$ is the midpoint of $BC.$
Proof: Let $AP\cap BC=X.$ Note that by menelaus, we get $\frac {AM}{MB}\cdot \frac{BX}{XC}\cdot \frac {CN}{AN}=1. $ Using the parallel condition, the claim follows.
Claim: $AQ$ is the symmedian.
Proof: Well.. it's well known. By spiral similarity (or simple angle chasing), we get $MBQ\sim CNQ.$ Dropping perps from $Q$ to $AB$ ( say $R$) and $AC$( say $S$) and using $\frac{MB}{NC}=\frac{AB}{AC}.$ We get $\frac{QR}{QS}=\frac{AB}{AC}.$
Since symmedian and median is reflection about angle bisector, the result follows.
Problem: Let $ABC$ be an acute-angled scalene triangle, with centroid $G$ and orthocenter $H.$ The circle with diameter $AH$ cuts the circumcircle of $BHC$ at $A',$ distinct from $H.$ Analogously define $B'$ and $C'.$ Prove that $A', B', C'$ and $G$ are concyclic.
Solution: Note that $A',B',C'$ are just humpty points ( denote it by $X_A,X_B,X_C$ ) and it is well known that that $HX_AG=90, $ and similarly for others. All these points lie on circle with diametre $HG.$
Problem: Let $\omega$ be a semicircle with diameter $PQ$. A circle $k$ is tangent internally to $\omega$ and to the segment $PQ$ at $C$. Let $AB$ be the tangent to $k$ perpendicular to $PQ$, with $A$ on $\omega$ and $B$ on the segment $CQ$. Show that $AC$ bisects $\angle PAB$.
Solution: Define $T :=$ touch point of $k$ and $\omega $ , $D:=$ touch point of $AB$ and $k$ .
Note that $T-D-Q$ is collinear by homothety . Now invert wrt $Q$ of radius $QB\cdot QP.$ Then note that $P\leftrightarrow B$, $T\leftrightarrow D. $
Here $A=(QTP)\cap DB\implies A'= DB\cap (QTP)=A.$ Also $C=$ Touch point of $k$ and $PQ,$ but are fixed so $C\leftrightarrow C.$ Hence $QB\cdot QP=QA^2=QC^2\implies QA=QC.$
Now by angle chase we get $\angle BAC=90-\angle QAB=\angle PAC.$
Problem: Triangle $ABC$ is inscribed into the circle $\omega_{}$. The circle $\omega_{1}$ touches the circle $\omega_{}$ internally and touches sides $AB$ and $AC$ in the points $M$ and $N,$ respectively. The circle $\omega_{2}$ also touches the circle $\omega_{}$ internally and touches sides $AB$ and $BC$ in the points $P$ and $K,$ respectively.
Prove that $NKMP$ is a parallelogram.
Solution:Let $I$ be the incentre, then we have $AI\perp MN$ and $IM=IN.$ Similary, we have $IP=IK.$ Also we have $I,K,P$ and $I,M,N$ collinear. Hence $NKMP$ is a parallelogram.
Problem: The diagonals of the quadrilateral $ABCD$ intersect at $P.$ Let $O_{1}$ and $O_{2}$ be the circumcenters of $\Delta APD$ and $\Delta BPC,$ respectively. Let $M, N$ and $O$ be the midpoints of $AC, BD$ and $O_{1}O_{2}$, respectively. Prove that $O$ is the circumcenter of $\Delta MPN.$
Solution: Let $E:=(APD)\cap (BPC).$ Note that $E$ is the spiral centre of the spiral similarity $\chi : AC\rightarrow DB.$ As $M,N$ are midpoints , we get that $\chi :M\rightarrow N. $ Hence $ \chi :CM\rightarrow BN\implies \chi : MN\rightarrow CB\implies (EMNP)$ is cyclic.
Now note that $O_1O_2\perp PE.$ Hence $O_1O_2$ is perpendicular bisector of $PE.$ Note that $\angle OO_1E=\angle PDE$ and $\angle EO_2O=\angle ECM.$ So $EO_1O_2\sim EAC.$ But $M,O$ are midpoints, so $\angle EOO_2=\angle EMC\implies \angle O_1OE=\angle PME \implies 2\cdot \angle PME=\angle POE. $( As $O$ lies on perp bisector.)
Hence $O$ is the circumcenter of $\Delta MPN.$
Problem(APMO 2013): Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.
Solution: We will show $[OEB]=[AOF],$ rest follows by similarly. So using sin formula for areas and fact that $OB=OA,$ enough to show that $\frac12\cdot \sin \angle {OBC}\cdot BE= \frac12\cdot \sin \angle {OAC}\cdot AF$ or using the fact that $O $ and $H$ are isogonal conjugates, enough to show $ \frac{AF}{AB}\cdot BE=\frac{AF}{AB}\cdot BE.$ done!
Problem(Macedonia MO 2018): Given is an acute $\triangle ABC$ with orthocenter $H$. The point $H'$ is symmetric to $H$ over the side $AB$. Let $N$ be the intersection point of $HH'$ and $AB$. The circle passing through $A$, $N$ and $H'$ intersects $AC$ for the second time in $M$, and the circle passing through $B$, $N$ and $H'$ intersects $BC$ for the second time in $P$. Prove that $M$, $N$ and $P$ are collinear.
Solution: We just have to use the fact that when $H$ is reflected wrt a side, the point lies on the circumcircle. So $H'\in(ABC).$ Again note that $H'N \perp AB,$ since it's just the extension of the altitude. So by cyclicity, $\angle H'MA=\angle H'PB=90.$ Hence $M,N,P$ are the foot of the altitude and we are done by simson lines.
Problem(JBMO 2016): A trapezoid $ABCD$ ($AB || CF$,$AB > CD$) is circumscribed.The incircle of the triangle $ABC$ touches the lines $AB$ and $AC$ at the points $M$ and $N$,respectively.Prove that the incenter of the trapezoid $ABCD$ lies on the line $MN$
Solution: Define $I$ as incentre of $ABCD,$ $J$ as incentre $ABC.$
For now define $I:= JB\cap NM.$ But note that ( by iran lemma) , we get $\angle AI'B=90.$ Now, we know that incentre bisect angles of trapezoid , so by angle chase we get $\angle AIB=90.$ But incentre also lies on angle bisector of angle $B.$
Hence $I'=I.$ And we are done!
So yeah! That's it for this time!! Maybe a combo post next time.
---
I also compiled them in one pdf as a problem set. Here's the google drive link https://drive.google.com/file/d/1OpcNYdvyjeBZvJ-3IZKcx8A09nSBQPSK/view?usp=sharing. Hope you like it!
Sunaina💜
ReplyDeleteI read your post and this blog is very good.
You have provided good knowledge in this blog.
This blog really impressed me.
Thank you for sharing your knowledge with all of us.
how do solve problems on a notebook ( when i do geo on paper it becomes 5x more difficult cuz my pride doesnt allow me to use ruler and stuff )
ReplyDeleteAlso , should I nake notes for MO? (can you show your olympiad notes *handwritten ones(
nice
ReplyDelete