Skip to main content

Posts

Showing posts with the label problem-set

How to prepare for INMO

Since INMO is coming up, it would be nice to write a post about it! A lot of people have been asking me for tips. To people who are visiting this site for the first time, hi! I am Sunaina Pati, an undergrad student at Chennai Mathematical Institute. I was an INMO awardee in 2021,2022,2023. I am also very grateful to be part of the India EGMO 2023 delegation. Thanks to them I got a silver medal!  I think the title of the post might be clickbait for some. What I want to convey is how I would have prepared for INMO if I were to give it again. Anyway, so here are a few tips for people! Practice, practice, practice!! I can not emphasize how important this is. This is the only way you can realise which areas ( that is combinatorics, geometry, number theory, algebra) are your strength and where you need to work on. Try the problems as much as you want, and make sure you use all the ideas you can possibly think of before looking at a hint. So rather than fixing time as a measure to dec...

Some problems in Olympiad Graph theory!

Hello there! It has been a long time since I uploaded a post here. I recently took a class at the European Girls' Mathematical Olympiad Training Camp 2024, held at CMI. Here are a few problems that I discussed! My main references were Po-Shen Loh's Graph theory Problem set (2008), Adrian tang's Graph theory problem set (2012) and Warut Suksompong's Graph Cycles and Olympiad Problems Handout and AoPS. I also referred to Evan Chen's Graph theory Otis Problem set for nice problems! Text Book Problems which are decent A connected graph $G$ is said to be $k$-vertex-connected (or $k$-connected) if it has more than $k$ vertices and remains connected whenever fewer than $k$ vertices are removed. Show that every $k$-connected graph of order atleast $2k$ contains a cycle of length at least $2k$. We begin with a lemma. Prove that a graph $G$ of order $n \geq 2k$ is $k$ connected then every 2 disjoint set $V_1$ and $V_2$ of $k$ distinct vertices each, there exist $k$...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...

Problems with meeting people!

Yeah, I did some problems and here are a few of them! I hope you guys try them! Putnam, 2018 B3 Find all positive integers $n < 10^{100}$ for which simultaneously $n$ divides $2^n$, $n-1$ divides $2^n - 1$, and $n-2$ divides $2^n - 2$. Proof We have $$n|2^n\implies n=2^a\implies 2^a-1|2^n-1\implies a|n\implies a=2^b$$ $$\implies 2^{2^b}-2|2^{2^a}-2\implies 2^b-1|2^a-1\implies b|a\implies b=2^c.$$ Then simply bounding. USAMO 1987 Determine all solutions in non-zero integers $a$ and $b$ of the equation $$(a^2+b)(a+b^2) = (a-b)^3.$$ Proof We get $$ 2b^2+(a^2-3a)b+(a+3a^2)=0\implies b = \frac{3a-a^2\pm\sqrt{a^4-6a^3-15a^2-8a}}{4}$$ $$\implies a^4-6a^3-15a^2-8a=a(a-8)(a+1)^2\text{ a perfect square}$$ $$\implies a(a-8)=k^2\implies a^2-8a-k^2=0\implies \implies a=\frac{8\pm\sqrt{64+4k^2}}{2}=4\pm\sqrt{16+k^2}. $$ $$ 16+k^2=m^2\implies (m-k)(m+k)=16.$$ Now just bash. USAMO 1988 Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1...

Global Probability: Expected Value

  Hey, welcome back! This blog post is a continuation of my previous blog post which you can read over  here  . These are just notes and problems.  The handouts/ books I referred to are Evan Chen's  Probability handout  , AOPS introduction to Counting and probability, Calt's  Expected value handout , brilliant and this  IIT Delhi handout. I am reading expected value because it's a prerequisite to the Otis combo unit Global. Hence the name Global Probability." Probability is Global Expected Value:    The expected value is the sum of the probability of each individual event multiplied by the number of times the event happens. It is denoted as $\Bbb E$ $[x]$ We have $$\Bbb E[x]=\sum x_n P(x_n)$$ where $x_n$ is the value of the outcome and $P(x_n)$ is the probability that $x_n$ occurs. Problem 1: What is the expected value of the number that shows up when you roll a fair $6$ sided dice? Solution: Since it's a fair dice, we get each outcom...

Probability is Global + Are (a,b) and [a,b] the same length?

 Hey everyone! Welcome back to my blog!  The number of diagonals are $\binom {12}{2}-30=36$ Today we have another topic which I am very scared of, PROBABILITY! I think to overcome this fear, I should start from basics. So, I refer AOPS's introduction to counting and probability. I did till chapter seven and thought to do the rest problems in this blog as notes. The book's pirated copy is available in zlib btw ( I don't think so I should have said this, but I think it's fine). I did the harder problems and wrote the solutions in Xournal. If you want to see them, here is the  pdf . Also both the pdf and following post has amc/ioqm type problems! So enjoy!! Problem 1: $n$ coins are flipped simultaneously flipped. The probability that at most one of them shows tails is $\frac{3}{16}.$ Find $n.$ Solution: We have $$\frac{n+1}{2^n}=\frac{3}{16}\implies 16(n+1)=3\cdot 2^n \implies n\ge 4. $$  But the RHS grows very fast, so $n=5$ is the only solution. Intersection o...

Bio is Love..

Adios, everyone! Boards preparation at its peak :(  However, I am not able to study how I used to. Every time I try to study for boards, I just keep thinking much about a topic, stare at the book, jam a song or just start doing procrastination by bookmarking random cute problems in HSO. It's been more than a year I have studied like with a focus on a book. My lappy is being a big distraction tbh. So after INMO score come out, I will just give my lappy for repair and say papa to bring it back home after June 2.  Milk and Mocha I literally am taking 2 days to complete 1 bio chapter, some times even 3. The rate of my "slowness" is probably because I am like every 15 minutes checking discord to see if the INMO scores are out or not. So HBCSE, thank you for keeping me anxious.  Funfact:- we must be grateful that there is an organisation that is conducting these national Olys. There are some countries where no Olys are being conducted. ( Same dialogue which mumma uses, but in p...