Skip to main content

Symmetric Polynomials #week 6

Well...
I haven't seen much symmetric polynomials in Olympiads, but still I am learning, because I found them cute. And I am basically using this blog as my notes :P

What are symmetric polynomials? 

One can understand this with  examples. If we are considering over 3 variables, $x_1,x_2,x_3$ then 
$$\sum_{sym}x_1^2\cdot x_2^3\cdot x_3=x_1^2\cdot x_2^3\cdot x_3+x_1^2\cdot x_3^3\cdot x_2+x_2^2\cdot x_1^3\cdot x_3+x_2^2\cdot x_3^3\cdot x_1+x_3^2\cdot x_1^3\cdot x_2.$$

See? $3!$ terms! Let's take one more example with again over 3 variables, $x_1,x_2,x_3$ then

$$\sum_{sym}x_1^2\cdot x_2^2= x_1^2\cdot x_2^2+x_1^2\cdot x_3^2+x_2^2\cdot x_1^2+x_2^2\cdot x_3^2+x_3^2\cdot x_1^2+x_3^2\cdot x_2^2$$

Wait.. why 2 times ? So basically what happens in symmetrictric sums, is we go through all $n!$ possible permutations. So, here we have $a^2\cdot b^2\cdot c^0$ as like the "general" form type, right? Now, list down all the $3!=6$ permutations of $x_1,x_2,x_3$, and put them in the general form, and then we sum it up.

So all possible permutations and then putting in the general form we get ,

${x_1,x_2,x_3}\rightarrow  x_1^2\cdot x_2^2$

${x_1,x_3,x_2}\rightarrow  x_1^2\cdot x_3^2$

${x_2,x_1,x_3}\rightarrow x_2^2\cdot x_1^2$

${x_2,x_3,x_1}\rightarrow x_2^2\cdot x_3^2$

${x_3,x_1,x_2}\rightarrow x_3^2\cdot x_1^2$

${x_3,x_2,x_1}\rightarrow x_3^2\cdot x_3^2$

Okie! Summing them and we will get the symmetric sums. So this makes sense I hope?

One thing to be noted is to not get confused between cyclic sums and symmetric sums.

To make things clear, Cyclic sums have only $n$ terms whereas in symmetric sums, we have $n!$ terms.

Let's go through another example , which I hope will perhaps clear this thing.

So considering  over $4$ variables, we get $$\sum_{cyc}x_1^2\cdot x_2=x_1^2\cdot x_2+x_2^2\cdot x_3+x_3^2\cdot x_4+x_4^2\cdot x_1.$$ 

See $4$ terms rights? and we are summing it in "cycle" types. 

Well, if you are still confused then go through OTIS excerpts, it's really nice!

Elementary Symmetric Polynomials:

Nothing fancy here, just viettas with no signs type. 

The elementary symmetric polynomials in $n$ variables $x_1,x_2,\dots x_n$ can be defined as 

$$\sigma_1= \sum x_i$$

$$\sigma_2= \sum_{i<j} x_i\cdot x_j$$

$$\sigma_3=\sum_{i<j<k} x_i\cdot x_j\cdot x_k$$ 

and so on with $$\sigma_n= x_1\cdot x_2 \dots x_n$$

Fundamental theorem of symmetric polynomials:

The fundamental theorem of symmetric polynomials states that any symmetric polynomial in n variables can be expressed  by a polynomial expression in terms of these elementary symmetric polynomials (uniquely).

And now we are going to take a lot of examples to verify this theorem !!! Oh, and why am I doing that? Again, I like to understand what's happening :P.

$$a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)={\sigma_1}^2-2\cdot \sigma_2$$

$$a^3+b^3=(a+b)(a^2+b^2-ab)=(a+b)({a+b}^2-3ab)=\sigma_1\cdot (\sigma_1^2-3\sigma_2)=\sigma_1 ^3-3\cdot \sigma_1\cdot \sigma_2$$

$$a^3+b^3+c^3=(a+b+c)^3 -3(\sum_{sym}a^2b)-6(abc)$$ $$=(a+b+c)^3-3(a+b+c)(ab+bc+ca)+9abc-6abc=\sigma_1^3-3\cdot \sigma_1\cdot \sigma_2+3\sigma_3$$

Okie this much was fine.. let's try $a^4+b^4+c^4$. So,
 $$a^4+b^4+c^4=(a+b+c)^4- 4(a^2+b^2+c^2)(ab+ca+bc)- 8(abc)(a+b+c)$$ $$=\sigma_1^4 -4({\sigma_1}^2-2\cdot \sigma_2)\cdot \sigma_2-8\sigma_3\cdot \sigma_1$$

These were simple.. now what about $\sum_{sym}x_1^2x_2x_3$ ? Note that,

$$2 \sum_{sym}x_1^2x_2x_3=2(\sum_{cyc}x_1x_2)^2- 2(\sum_{cyc}x_1^2x_2^2)=2\sigma_2^2-(x_1^2+x_2^2+x_3^2)^2 + (x_1^4+x_2^4+x_3^4)$$ $$= 2\sigma_2^2- [{\sigma_1}^2-2\cdot \sigma_2]^2+[\sigma_1^4 -4({\sigma_1}^2-2\cdot \sigma_2)\cdot \sigma_2-8\sigma_3\cdot \sigma_1]$$

Okie.. this looks fine to me.. but too tiresome.. T_T. I might have made some mistake :(

Newton Sums:

It's given in AOPS wiki

So we can basically find out any $x_1^d+\dots+x_n^d$, recursively using this 

$$a^n+b^n+c^n=(a+b+c)(a^{n-1}+b^{n-1}+c^{n-1})-(ab+bc+ca)(a^{n-2}+b^{n-2}+c^{n-2})+abc(a^{n-3}+b^{n-3}+c^{n-3}).$$

So this guarantees that we can express in the elementary symmetric polynomials form, however I am not quite sure about the uniqueness.. 

Yeah so that's it for today! I will do some problem solving now!

Sunaina💜

Comments

Post a Comment

Popular posts from this blog

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots ...

IMO 2023 P2

IMO 2023 P2 Well, IMO 2023 Day 1 problems are out and I thought of trying the geometry problem which was P2.  Problem: Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$. Well, here's my proof, but I would rather call this my rough work tbh. There are comments in the end! Proof Define $A'$ as the antipode of $A$. And redefine $P=A'D\cap (ABC)$. Define $L=SP\cap (PDB)$.  Claim1: $L-B-E$ collinear Proof: Note that $$\angle SCA=\angle SCB-\angle ACB=90-A/2-C.$$ So $$\angle SPA=90-A/2-C\implies \ang...

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam...

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Problems with meeting people!

Yeah, I did some problems and here are a few of them! I hope you guys try them! Putnam, 2018 B3 Find all positive integers $n < 10^{100}$ for which simultaneously $n$ divides $2^n$, $n-1$ divides $2^n - 1$, and $n-2$ divides $2^n - 2$. Proof We have $$n|2^n\implies n=2^a\implies 2^a-1|2^n-1\implies a|n\implies a=2^b$$ $$\implies 2^{2^b}-2|2^{2^a}-2\implies 2^b-1|2^a-1\implies b|a\implies b=2^c.$$ Then simply bounding. USAMO 1987 Determine all solutions in non-zero integers $a$ and $b$ of the equation $$(a^2+b)(a+b^2) = (a-b)^3.$$ Proof We get $$ 2b^2+(a^2-3a)b+(a+3a^2)=0\implies b = \frac{3a-a^2\pm\sqrt{a^4-6a^3-15a^2-8a}}{4}$$ $$\implies a^4-6a^3-15a^2-8a=a(a-8)(a+1)^2\text{ a perfect square}$$ $$\implies a(a-8)=k^2\implies a^2-8a-k^2=0\implies \implies a=\frac{8\pm\sqrt{64+4k^2}}{2}=4\pm\sqrt{16+k^2}. $$ $$ 16+k^2=m^2\implies (m-k)(m+k)=16.$$ Now just bash. USAMO 1988 Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1...

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I did...

Let's complex bash Part 1

I have to learn complex bash. And almost everyone knows that I am notes taking girl so thought why not make a post on complex bash ( so that I don't get emotionally demotivated lol).😇 There wasn't any need for learning complex bash, but it was in my dream checklist i.e " To learn a bash." And since I am not loaded with exams, I think it's high time to learn Bash and new topics.  Also if anyone from the "anti-bash" community is reading, sorry in advance and R.I.P.  Notes:- 1. Complex numbers are of the form $z=a+ib,$ where $a$ and $b$ are real numbers and $i^2=-1.$ 2. In polar form, $z=r(\cos \theta+~~i\sin\theta)=~~re^{i\theta},$ where $r=~~|z|=~~\sqrt{a^2+b^2},$ which is called the magnitude. 3. Here we used euler's formula i.e $\cos \theta+~~i\sin\theta=~~e^{i\theta}.$ 4. The $\theta $ is called the argument of $z,$ denored $\arg z.$ ( $\theta$ can be considered in $\mod 360$ and it is  measured anti-clockwise). 5. The complex conjugate of $z$ is ...

How to prepare for RMO?

"Let's wait for this exam to get over".. *Proceeds to wait for 2 whole fricking years!  I always wanted to write a book recommendation list, because I have been asked so many times! But then I was always like "Let's wait for this exam to get over" and so on. Why? You see it's pretty embarrassing to write a "How to prepare for RMO/INMO" post and then proceed to "fail" i.e not qualifying.  Okay okay, you might be thinking, "Sunaina you qualified like in 10th grade itself, you will obviously qualify in 11th and 12th grade." No. It's not that easy. Plus you are talking to a very underconfident girl. I have always underestimated myself. And I think that's the worst thing one can do itself. Am I confident about myself now? Definitely not but I am learning not to self-depreciate myself little by little. Okay, I shall write more about it in the next post describing my experience in 3 different camps and 1 program.  So, I got...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...