Skip to main content

Global Probability: Expected Value

 Hey, welcome back! This blog post is a continuation of my previous blog post which you can read over here . These are just notes and problems. 

The handouts/ books I referred to are Evan Chen's Probability handout , AOPS introduction to Counting and probability, Calt's Expected value handout, brilliant and this IIT Delhi handout.

I am reading expected value because it's a prerequisite to the Otis combo unit Global. Hence the name Global Probability."

Probability is Global

Expected Value:   

  • The expected value is the sum of the probability of each individual event multiplied by the number of times the event happens.
  • It is denoted as $\Bbb E$ $[x]$
  • We have $$\Bbb E[x]=\sum x_n P(x_n)$$
    where $x_n$ is the value of the outcome and $P(x_n)$ is the probability that $x_n$ occurs.

Problem 1: What is the expected value of the number that shows up when you roll a fair $6$ sided
dice?

Solution: Since it's a fair dice, we get each outcome to have equal probability i.e $\frac {1}{6}.$
So $$\Bbb E[x]=\frac 16 \cdot 1+\frac 16 \cdot 2+\frac 16 \cdot 3+\frac 16 \cdot 4+\frac 16 \cdot 5+\frac 16 \cdot 6=\frac {21}{6}=3.5$$

Problem 2: Find the expected value of a roll on a fair $n$ sided dice, labelled from $1$ to $n.$

Solution: Since it's a fair dice, we get each outcome to have equal probability i.e $\frac {1}{n}.$ So $$\Bbb E[x]=\frac 1n \cdot 1+\frac 1n \cdot 2+\dots+\frac 1n \cdot (n-1)+\frac 1n\cdot n=\frac {n+1}{2}$$

Problem 3: Suppose you have a weighted coin in which heads comes up with probability $3/4$ and tails $1/4$ with probability . If you flip heads, you win $2$ but if you flip tails, you lose $1.$ What is the expected win of a coin flip in dollars?

Solution: $$\Bbb E[x]=\frac{3}{4} 2+\frac{1}{4}(-1)=1.25$$

Problem 4:  At a raffle, $25$ tickets are sold at $1$ each for $3$ prizes of $100, 50,$ and $10.$ You buy $1$ ticket. What is the expected value of your gain?

Solution: $$\Bbb E[x]= \frac{1}{25}\cdot 99+ \frac{1}{25}\cdot 49+ \frac{1}{25}\cdot 9-\frac{22}{25}\cdot 1=\frac{135}{25}=5.4$$

Problem 5: Linda estimates the number of questions she answered correctly on a test. She answered $10$ correctly with probability $0.6,$  $20$ correctly with probability $0.3,$ and $50$ correctly with probability $0.1.$ What is the expected value of the number of questions Linda answered correctly?

Solution: $$\Bbb E[x]=\frac{6}{10}\cdot 10+\frac{3}{10}\cdot 20+\frac{1}{10}\cdot 50$$
$$=17$$

Problem 6: Mara is playing a game. There are two marbles in a bag. If she chooses the purple marble, she will win $10.$ If she chooses the orange marble, she will win $200.$ What is the expected value of Mara's winnings from the game?

Solution:  $$\Bbb E[x]=\frac 12 \cdot 10+\frac 12 \cdot 200= 105$$

Problem 7: In the casino game roulette, a wheel with $38$ spaces ($18$ red, $18$ black, and $2$ green) is spun. In one possible bet, the player bets $1$ on a single number. If that number is spun on the wheel, then they receive $36$ (their original $1 + 35$). Otherwise, they lose their $1.$ On average, how much money should a player expect to win or lose if they play this game repeatedly?

Solution: $$\Bbb E[x]=\frac{1}{38} \cdot 35-\frac{37}{38}\cdot 1=\frac{-2}{38}$$

Problem 8: In a certain state's lottery, $48$ balls numbered $1$ through $48$ are placed in a machine and six of them are drawn at random. If the six numbers are drawn match the numbers that a player had chosen, the player wins $1,000,000.$ If they match $5$ numbers, then win $1,000.$ It costs $1$ to buy a ticket. Find the expected value.

Solution: $$\Bbb E[x]=\ \frac{1}{\binom{48}{6}}\cdot 1000000+ \frac{6\cdot 42}{\binom{48}{6}}\cdot 1000-\frac{\binom{48}{6}-253}{\binom{48}{6}}\cdot 1$$ 
$$ =\frac{12271259}{12271512}$$

Linearity of Expectation:

If there exist variables $a_1 , a_2 , a_3 ,\dots, a_n ,$ independent or dependent,

$$\Bbb E[a_1+a_2+\dots+a_n]=\Bbb E[a_1]+\dots+ \Bbb E[a_n]$$

Also $$\Bbb E[X\times Y]=\Bbb E[X]\times \Bbb E[Y]$$ holds when $X,Y$ independent.

Problem 9: What is the expected value of the sum of two dice rolls?

Solution: Let the expected value of the first dice be $X$ and the second dice be $Y.$
So $$\Bbb E[X+Y]=\Bbb E[X]+\Bbb E[Y]= 2\cdot \frac{7}{2}=7.$$

Problem 10: Caroline is going to flip $10$ fair coins one after the other. If she flips $n$ heads, she will be paid $n$. What is the expected value of her payout?

Solution:  Let $X_i$ be $1$ if heads and $0.$ Also, denote $X_i$ as the outcome of the $i$ th coin flip.
So $$\Bbb E[X]=\Bbb E[X_1+\dots + X_{10}]=\Bbb E[X_1]+\dots +\Bbb E[X_{10}]=10\cdot \frac 12=5$$

Problem 11: Sammy is lost and starts to wander aimlessly. Each minute, he walks one meter forward with probability \frac{1}{2}  ​ , stays where he is with probability \frac{1}{3}  ​ , and walks one meter backward with probability \frac{1}{6}. After one hour, what is the expected value for the forward distance (in meters) that Sammy has travelled?

Solution: Let $X_i$ be the move sammy does in $i$ minute. Note that 
$$\Bbb  E[X_i]=\frac{1}{2}\cdot 1+\frac{1}{3}\cdot 0-\frac{1}{6}=\frac{1}{3}$$
So $$ \Bbb E[X]=\Bbb E[X_1+\dots +X_60]=\Bbb E[X_1]+\dots + \Bbb E[X_60]=60\cdot \frac{1}{3}=20$$

Problem 12: $25$ independent, fair coins are tossed in a row. What is the expected number of consecutive HH pairs?

Solution: So consider the consecutive pairs. Let $C_i$ denote the $i$th coin in the row.. Then we consider the pairs $$P_1=[C_1,C_2], P_2=[C_2,C_3],\dots, P_{24}=[C_{24},C_{25}].$$
Now, let $$X_i= 1 \text{ if P_i HH}, 0 \text{ else }$$
Note that $$\Bbb E[X_i]=\frac{1}{4}.$$  

Hence, even though they are dependent, by linearity of expectation,
 $$\Bbb  E[\text{ no of consecutive pair} ] =\Bbb E[X_1]+\dots +\Bbb E[X_{24}]=24\cdot \frac{1}{4}=6$$

Problem 13: Suppose that $A$ and $B$ each randomly, and independently,
choose $3$ of $10$ objects. Find the expected number of objects chosen by both $A$ and $B.$

Solution: Let $X$ be the number of objects chosen by both A and B. Then let $$X_i= 1\text{ if A and B both select i}, 0 \text{ else }.$$ 
So $$\Bbb E[X_i]=\Bbb P[ \text{ A and B select i}]=\Bbb P[ \text{A selects i }] \times \Bbb P[\text{ B selects i }]=\frac{9}{100}$$ Alternatively, we have $$\Bbb E[X_i]=\frac{\binom{9}{2}^2}{\binom{10}{3}^2}$$
So $$\Bbb E[X]=\Bbb E[X_1]+\dots \Bbb E[X_{10}]=10\cdot \Bbb E[X_i]= 10\cdot \frac{9}{100}.$$

Problem 14: At a nursery, $2006$ babies sit in a circle. Suddenly, each baby randomly pokes either the baby to its left or to its right. What is the expected value of the number of unpoked babies?

Solution: Let the babies be $B_1, B_2, \dots B_{2006}.$  
Note that any pair $$\Bbb E[X_i]= \frac{1}{4}$$  ( defining $1$ when unpoked)
And then we do linearity of Expectation. 
$$\Bbb E[x]= \Bbb E[X_1+\dots +X_{2006}]=\Bbb E[X_1]+\Bbb E[X_2]+\dots+ \Bbb E[X_{2006}]= 2006\cdot \frac{1}{4}$$

It's the famous paradox game. :P

Problem 15: You are playing a game in which prize pool starts at $1.$ On every turn, you flip a fair coin. If you flip head, then the prize pool doubles. If tails, the game ends.

Solution:  Note that $$P(T)=\frac{1}{2}, P(HT)=\frac{1}{4}, P(HHT)=\frac{1}{8},\dots $$
$$ \Bbb E(X) = \frac{1}{2}\cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8}4  + \frac{1}{16}8 + \cdots  = 0.5 + 0.5 + 0.5 + 0.5 + \cdots = \infty $$ A paradox. Cause expected value cant be infinite :P

Problem 16: Two random, not necessarily distinct, permutations of the digits $2017$ are selected and added together. What is the expected value of this sum?

Solution:  Thanks to Pranav for the write up.
Let the permutations be $P_1,\dots, P_{24}.$ And the sums be $S_1,S_2,\dots,S_{288}.$
 Total number of permutations of $2017 = 4!$. Total number of distinct sums $= \frac{1}{2} \cdot (24)^2 = 288$. 
Let $s$ be a random variable representing sum of two permutations of $2017$ taken at random. Then, $$\Bbb{E}[s] = \sum s \cdot \Bbb{P}(s) = \sum s \cdot \frac{1}{288} = \frac{1}{288} \cdot \sum s$$. Now, we have to calculate $\sum s$. Clearly, $$s = 3! \cdot (2000 + 1000 + 7000) + 3! \cdot (200 + 100 + 700) + 3! \cdot (20 + 10 + 70) + 3! \cdot (2 + 1 + 7)$$ $$\implies s = 6 \cdot 11110 = 66660$$ $$\implies \Bbb{E}[s] = \frac{66660}{288} = 231.458\overline{3}$$

The following proof is from the calt handout! The handout is very nice!!!!

Theorem: If the probability of a variable $x$ occurring is $p,$ then the expected number of times we must repeat the event so that we get $x$ is $\frac{1}{p}$.

Proof:  Let $X$ be the number of times we would have to repeat to get $x.$

So $$\Bbb E[X]= 1\cdot \Bbb P[\text{ x occurring in 1st turn}] + 2\cdot \Bbb P[\text{ x occurring in 2nd turn}]+\dots $$ 
$$ p+2\cdot (p-1)p+3 \cdot (p-1)^2\cdot p+\dots = p( 1+ 2(p-1)+ 3 (p-1)^2+ \dots )$$
multiplying by $(1-p)$ and subtracting,
$$ \implies p\cdot  \Bbb E[X]= p(1 +( 1-p)+ (1-p)^2+\dots ) = p \frac {1}{p}$$ 
$$ \implies \Bbb E[X]= \frac{1}{p}$$


Yes!! I worked very hard on this post tbh! I think a sequel to the blogpost will come containing harder problems and the state's expected value problems. 

I hope you guys liked it! Tomorrow, I will be posting 2 blog posts, one on GT and the other on recursion! 

Sunaina 💜

Comments

Post a Comment

Popular posts from this blog

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam

Introduction

  Hey Everyone!! This is my first Blog post. So let me give a brief introduction about myself. I am Sunaina Pati. I love solving Olympiad math problems,  learning crazy astronomical facts , playing hanabi and anti-chess, listening to Kpop , love making diagrams in Geogebra and  teaching other people maths 😊 . I love geometry , number theory and Combinatorics . I am starting this blog to keep myself a bit motivated in doing studies 😎 . Right now, I am planning to write walkthroughs on some of the best problems I tried over the week which can refer for hints 'cause solutions contain some major spoilers and one learns a lot while solving the problem on his own rather than seeing solutions . Also, there will be some reviews about Kpop songs, study techniques, my day to day lifestyles,exam reviews and ofc some non-sense surprises 😂.  I am planning to  try  posting every week on Sundays or Saturdays ( most probably) ! Though there is no guarantee about when I will post , so if you are

How to prepare for RMO?

"Let's wait for this exam to get over".. *Proceeds to wait for 2 whole fricking years!  I always wanted to write a book recommendation list, because I have been asked so many times! But then I was always like "Let's wait for this exam to get over" and so on. Why? You see it's pretty embarrassing to write a "How to prepare for RMO/INMO" post and then proceed to "fail" i.e not qualifying.  Okay okay, you might be thinking, "Sunaina you qualified like in 10th grade itself, you will obviously qualify in 11th and 12th grade." No. It's not that easy. Plus you are talking to a very underconfident girl. I have always underestimated myself. And I think that's the worst thing one can do itself. Am I confident about myself now? Definitely not but I am learning not to self-depreciate myself little by little. Okay, I shall write more about it in the next post describing my experience in 3 different camps and 1 program.  So, I got

INMO Scores and Results

Heya! INMO Results are out! Well, I am now a 3 times IMOTCer :D. Very excited to meet every one of you! My INMO score was exactly 26 with a distribution of 17|0|0|0|0|9, which was a fair grading cause after problem 1, I tried problem 6 next. I was hoping for some partials in problem 4 but didn't get any.  I am so so so excited to meet everyone! Can't believe my olympiad journey is going to end soon..  I thought to continue the improvement table I made last year! ( I would still have to add my EGMO performance and also IMO TST performance too) 2018-2019[ grade 8]:  Cleared PRMO, Cleared RMO[ State rank 4], Wrote INMO 2019-2020[ grade 9]:  Cleared PRMO, Cleared RMO[ State topper], Wrote INMO ( but flopped it) 2020-2021[grade 10]:  Cleared IOQM, Cleared INMO [ Through Girl's Quota] 2021-2022[grade 11]:  Wrote EGMO 2022 TST[ Rank 8], Qualified for IOQM part B directly, Cleared IOQM-B ( i.e INMO) [Through general quota],  2022-2023 [grade 12]:  Wrote EGMO 2023 TST [ Rank 2], Mad

Reflecting on past

INMO Scores are out!! I am now a two times INMO awardee :) I got 16|0|1, so 17 in total! Yes, 16 in P1 T_T. I was thinking I would lose marks because of the way I wrote.  Lemme tell ya'll what happened that day but first I should share a few thoughts I had before the exam. My thoughts Honestly, my preparation for INMO was bad. In fact, I should say I didn't work hard at all. As I have said earlier, I had lost all my hopes for INMO and Olympiads as a whole after EGMO TSTs happened.  Art by Jelena Janic EGMO TSTs i.e European Girl's Mathematical Olympiad Team selection Tests 2022.  Literally my thoughts after EGMO TSTs I feel very ashamed to share but I got 1 mark in my EGMO TSTs. Tests in which I literally gave my whole life. I did so many ISLs ( like SO MANY), I mocked EGMO 2021 TST where my score was 28/42 and I perfected Day 2. 1 mark in the TST just showed my true potential. There are way better people than me in olys. A friend even said to me, "If I wouldn't

Bio is Love..

Adios, everyone! Boards preparation at its peak :(  However, I am not able to study how I used to. Every time I try to study for boards, I just keep thinking much about a topic, stare at the book, jam a song or just start doing procrastination by bookmarking random cute problems in HSO. It's been more than a year I have studied like with a focus on a book. My lappy is being a big distraction tbh. So after INMO score come out, I will just give my lappy for repair and say papa to bring it back home after June 2.  Milk and Mocha I literally am taking 2 days to complete 1 bio chapter, some times even 3. The rate of my "slowness" is probably because I am like every 15 minutes checking discord to see if the INMO scores are out or not. So HBCSE, thank you for keeping me anxious.  Funfact:- we must be grateful that there is an organisation that is conducting these national Olys. There are some countries where no Olys are being conducted. ( Same dialogue which mumma uses, but in p

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral. Problem:  A convex quadrilateral $

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I didn't r

IMO 2023 P2

IMO 2023 P2 Well, IMO 2023 Day 1 problems are out and I thought of trying the geometry problem which was P2.  Problem: Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$. Well, here's my proof, but I would rather call this my rough work tbh. There are comments in the end! Proof Define $A'$ as the antipode of $A$. And redefine $P=A'D\cap (ABC)$. Define $L=SP\cap (PDB)$.  Claim1: $L-B-E$ collinear Proof: Note that $$\angle SCA=\angle SCB-\angle ACB=90-A/2-C.$$ So $$\angle SPA=90-A/2-C\implies \ang

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots 2n\equiv n(2n+1