Skip to main content

Posts

Showing posts with the label RMO

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...

EGMO 2024 P2

  This problem is the same level as last year's P2 or a bit harder, I feel.  No hand diagram because I didn't use any diagram~ (I head solved it) Problem: Let $ABC$ be a triangle with $AC>AB$ , and denote its circumcircle by $\Omega$ and incentre by $I$. Let its incircle meet sides $BC,CA,AB$ at $D,E,F$ respectively. Let $X$ and $Y$ be two points on minor arcs $\widehat{DF}$ and $\widehat{DE}$ of the incircle, respectively, such that $\angle BXD = \angle DYC$. Let line $XY$ meet line $BC$ at $K$. Let $T$ be the point on $\Omega$ such that $KT$ is tangent to $\Omega$ and $T$ is on the same side of line $BC$ as $A$. Prove that lines $TD$ and $AI$ meet on $\Omega$. We begin with the following claim! Points $B,X,Y,C$-are concyclic Because $CD$-is tangent to the incircle, we get that $\angle CYD=\angle BXD$ and $\angle CDY=\angle DXY$. So $$\angle BXD+\angle DXY+YCB=180 \implies \angle BXY+\angle YCB=180.$$  Also note that $K-B-C$ is radical axis of the inci...