Skip to main content

How to prepare for INMO

Since INMO is coming up, it would be nice to write a post about it! A lot of people have been asking me for tips.

To people who are visiting this site for the first time, hi! I am Sunaina Pati, an undergrad student at Chennai Mathematical Institute. I was an INMO awardee in 2021,2022,2023. I am also very grateful to be part of the India EGMO 2023 delegation. Thanks to them I got a silver medal! 

I think the title of the post might be clickbait for some. What I want to convey is how I would have prepared for INMO if I were to give it again. Anyway, so here are a few tips for people!

Practice, practice, practice!!

  • I can not emphasize how important this is. This is the only way you can realise which areas ( that is combinatorics, geometry, number theory, algebra) are your strength and where you need to work on.

  • Try the problems as much as you want, and make sure you use all the ideas you can possibly think of before looking at a hint. So rather than fixing time as a measure to decide to give up on a problem, fix ideas as the measure. Obviously, you would have to decide if you are out of ideas or not. Essentially, through each problem, you should try to maximize your learning, while minimizing your time. Again, I am not implying that you should spend less time on each problem, but since time one has limited time to spend each day, it would be ideal to try to minimise the time spent while maximizing the amount of knowledge you gain.


  •  There is no fixed threshold/ requirement for the amount of time you should spend every day to become an INMO awardee. While this might be a concern for a lot of people, my advice to them should be to not think about this question and rather just focus on problem-solving whenever you can. Also, time spent is a continuous function rather than being discrete. At least for me and many other things, we usually think about a math problem almost all the time, consciously or subconsciously. Hence, this question is very hard to answer. 

But practice from where??

  • Another question which I get asked a lot is "Where should I practice problems. Could you recommend some sources?". Again, pretty subjective answer. Moreover, please note that whatever I say shall not be a "requirement". 


  • I would like to be comfortable in solving IMO shortlist problems of indexes 1,2 and 3. And for my strong areas, at least 6. I also feel INMO and Russian, USA and Iranian olympiads have a very similar flavour as INMO and I would have liked to solve those problems. They look very fun! Additionally, definitely INMO, IMO, EGMO, APMO and RMM problems.  

  • I also joined OTIS ( by Evan Chen), and the problems in those problem sets/ handouts were great! I would love to try harder problems and be more confident. 

  • Another advice, I would give to everyone is to not be intimidated by a problem because of the source and rather give it an honest try. Moreover, do not restrict yourself to these particular sources and just try the problems you love. Remember, it is not about the quantity but the ideas you gain while trying to solve these problems. The ideas which you get but do not work. They are equally important. 

Wait, what about theory?????

So, for the books, here is a list of books/ handouts which you can try!

1. Evan Chen’s Handouts and his book EGMO

2. Alex Remerov’s Handouts

3. Yufei Zhao’s Handouts 

4. Rohan Goyal's Handouts ( Rg's handouts can be found here

5. Modern Olympiad Number Theory by Aditya Khurmi

6. Additionally, the Online math club's Youtube channel is a really good source to learn from! Please do check it out :)

7. And maybe this blog too! It has a lot of problems which you can try :)


  • Please, do not be intimidated at all by the theory and remember that math olympiads are truly mostly about problem-solving.  

Any final advice??

  • A few actually. Practice mocks and timed exams. Time pressure is real and it's nicer to get used to it. 

  • Try to not make "winning gold at IMO" your goal but rather learning a lot of new math and solve problems your goal. Not saying the former is bad, but it is pretty stressful and take the fun out of it.

  • Try solving problems in a group as it is an extremely fun experience. You get to meet and talk to people who are just like you. It makes your journey fun!


  • Do not be stressed and never compare yourself with others. This journey is yours and simply yours. 
~Sunaina 

Comments

  1. Replies
    1. didi,ashani sirer class ki tumi korte?

      Delete
  2. Wow, this is nice!
    Tbh, despite being an INMO Awardee, I am kind of scared of INMO... this gave me some courage.

    ReplyDelete
  3. This comment has been removed by the author.

    ReplyDelete
  4. This is such a helpful and well-structured guide for anyone aiming to crack the INMO! I really appreciate how you've broken down the preparation strategy by topic and provided practical tips on problem-solving and time management. Your emphasis on understanding the concepts deeply rather than just practicing mechanically is so important, especially for math olympiads. The resources you mentioned are also spot-on. Overall, it's a motivating read for students and gives a clear roadmap to follow. Great job putting this together!

    ReplyDelete

Post a Comment

Popular posts from this blog

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots ...

IMO 2023 P2

IMO 2023 P2 Well, IMO 2023 Day 1 problems are out and I thought of trying the geometry problem which was P2.  Problem: Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$. Well, here's my proof, but I would rather call this my rough work tbh. There are comments in the end! Proof Define $A'$ as the antipode of $A$. And redefine $P=A'D\cap (ABC)$. Define $L=SP\cap (PDB)$.  Claim1: $L-B-E$ collinear Proof: Note that $$\angle SCA=\angle SCB-\angle ACB=90-A/2-C.$$ So $$\angle SPA=90-A/2-C\implies \ang...

Problems with meeting people!

Yeah, I did some problems and here are a few of them! I hope you guys try them! Putnam, 2018 B3 Find all positive integers $n < 10^{100}$ for which simultaneously $n$ divides $2^n$, $n-1$ divides $2^n - 1$, and $n-2$ divides $2^n - 2$. Proof We have $$n|2^n\implies n=2^a\implies 2^a-1|2^n-1\implies a|n\implies a=2^b$$ $$\implies 2^{2^b}-2|2^{2^a}-2\implies 2^b-1|2^a-1\implies b|a\implies b=2^c.$$ Then simply bounding. USAMO 1987 Determine all solutions in non-zero integers $a$ and $b$ of the equation $$(a^2+b)(a+b^2) = (a-b)^3.$$ Proof We get $$ 2b^2+(a^2-3a)b+(a+3a^2)=0\implies b = \frac{3a-a^2\pm\sqrt{a^4-6a^3-15a^2-8a}}{4}$$ $$\implies a^4-6a^3-15a^2-8a=a(a-8)(a+1)^2\text{ a perfect square}$$ $$\implies a(a-8)=k^2\implies a^2-8a-k^2=0\implies \implies a=\frac{8\pm\sqrt{64+4k^2}}{2}=4\pm\sqrt{16+k^2}. $$ $$ 16+k^2=m^2\implies (m-k)(m+k)=16.$$ Now just bash. USAMO 1988 Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1...

IMO Shortlist 2021 C1

 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\forall x,y\in T,(x,y)=d,$ where $d$ is constant. Fix a random element $a$. Note that $(x,a)|a$. So $(x,a)\le a$.Since there are infinite elements and finite many possibilities for the gcd (atmost $a$). So $\exists$ set $T$ which is infinite such that $\forall b_1,b_2\in T$ $$(a,b_1)=(a,b_2)=d.$$ Note that if $(b_1,b_2)\ne d$ then we get a contradiction as we get a set satisfying the proble...

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam...

Some random problems

  I know, I know. Different font indeed. I have deleted a few of my MSE answers. I felt they weren't that good in quality. And a few questions are from my prev aops account which I have deactivated now. I also have posted 10 IOQM types of problems. These can be used while preparing for IOQM. Problem: Prove that $\dfrac{ab}{c^3}+\dfrac{bc}{a^3}+\dfrac{ca}{b^3}> \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$, where $a,b,c$  are different positive real numbers.  Proof: Note that by AM-GM $$\frac{ab}{c^3}+\frac{bc}{a^3}\ge \frac{2b}{ac}$$ and we also have $$\frac {b}{ac}+\frac{c}{ab}\ge \frac{2}{a}$$. Hence, $$\sum_{cyc}\frac{ab}{c^3}\ge\sum_{cyc}\frac{b}{ac}\ge\sum_{cyc}\frac{1}{a}$$ where everything we got is by applying AM-GM on $2$ terms and then dividing by $2$. USA TST 2007: Triangle $ABC$ which is inscribed in circle $\omega$. The tangent lines to $\omega$ at $B$ and $C$ meet at $T$. Point $S$ lies on ray $BC$ such that $AS$ is perpendicular to $AT$. Points $B_1$ and $C_1...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I did...