Skip to main content

Problems done in July

 July was LIOG month. Just LIOG was done, and then we had MMC ( till July 14). SO from the last two weeks, I was doing LIOG only. And I did some non-geo too! Also, I am not adding all the problems I did. A few only in fact. One can go through my apps post ( Jelena_ivanchic)

Here are a few problems and solutions/walkthroughs:

Problem: Let $A_1$ be the intersection of tangent at $A$ to the circumcircle of a triangle $\Delta ABC$ with sideline $BC$. Similarly define $B_1,C_1$. Show, that $A_1,B_1$ and $C_1$ are collinear

Walkthrough: 

  • Use this $\Delta ACA_1\sim \Delta BAA_1.$
  • So we get$$\frac{AC}{BA}=\frac{CA_1}{AA_1}=\frac{AA_1}{BA_1}$$$$ \implies \frac{CA_1}{AA_1}\cdot \frac{AA_1}{BA_1} =\frac{AC^2}{BA^2}$$$$\implies  \frac{AC^2}{BA^2}=\frac{CA_1}{BA_1}. $$Now, apply menelaus on $ABC.$

Problem: Let $\Gamma$ be a circle and let $B$ be a point on a line that is tangent to $\Gamma$ at the point $A$. The line segment $AB$ is rotated about the center of the circle through some angle to the line segment $A’B’$. Prove that $AA’$ passes through the midpoint of $BB’$.

Walkthrough:

Solved with PC and Krutarth.

  • Let $D$ be the midpoint of $BB',$ we get $\angle XAB=\angle XDB,$ hence $XADB$ cyclic.
  • Now by similarity (spiral but let's not bring fancy words), we get $XBB'\sim XAA'$ ( actually isosceles but we don't need that fact).
  • So $\angle  XBB'=\angle  XAA',$ but $\angle XBB'=\angle XAF,$ where $F$ is a point on ray $DA.$



Problem: Given an infinite sequence of numbers $a_1, a_2, a_3,...$ . For each positive integer $k$ there exists a positive integer $t = t(k)$ such that $a_k = a_{k+t} = a_{k+2t} =...$. Is this sequence necessarily periodic? That is, does a positive integer $T$ exist such that $a_k = a_{k+T}$ for each positive integer k?

Walkthrough: No, it’s not necessary.

Here’s the construction:

Let $X$ denote the place of the sequence, for example in sequence $1,2,3,4,\dots $ $1st $ place is $1.$

Then let$$1\rightarrow v_2(x)=0 $$$$2\rightarrow v_2(X)=1 $$$$3\rightarrow v_2(X)=2 $$$$4\rightarrow v_2(X)=3 $$$$5\rightarrow v_2(X)=4$$$$\vdots $$

So the sequence looks like$$1213121412131215 \dots.$$Clearly, it’s not periodic.

Problem: Find all pairs of natural numbers $(m,n)$ bigger than $1$ for which $2^m+3^n$ is the square of the whole number.

Walkthrough: Note that $\mod 3$ gives $m$ is even and $\mod 4$ gives $n$ is even. We get$$2^{2k}= (X^2-3^l)(X^2+3^l)\implies X^2-3^l= 2^a,~~ X^2+3^l=2^b \implies 2^a| 2^b \implies 2^a|2\cdot 3^l| \implies a=0 \text{or} 1$$So $X^2-3^l=1, 2$ but squares are $0,1\mod 3.$

So$$X^2-3^l=1 \mod 3$$Now we will try to solve$$X^2-3^l=1$$

Note that$$X^2-1=(X-1)(X+1)=3^l\implies X-1=3^w,X+1=3^v\implies 3^w|2\implies w=0 \implies X-1=1\implies 2.$$

Clearly, $X=2$ doesn't satisfy. So we don't have any solutions.

Problem: Let $BD$ be a bisector of triangle $ABC$. Points $I_a$, $I_c$ are the incenters of triangles $ABD$, $CBD$ respectively. The line $I_aI_c$ meets $AC$ in point $Q$. Prove that $\angle DBQ = 90^\circ$.

Walkthrough: 

  • Let $F:= I_aI_c \cap BD,~~ J:=BI_a\cap AC,~~ K:=BI_c\cap AC.$
  • Now, we have$$ \angle I_aDI_c=90,~~\angle FDI_a=\angle I_aDA.$$Then we have$$-1=(E,F;I_A,I_C)$$projecting through $B$ on $AC.$ We get$$ -1=(E,F;I_A,I_C)=(E,D;J,K).$$We already have$$\angle JBD=\angle KBD\implies \angle DBE=90.$$

 


Problem: Let $ABC$ be a triangle with incenter $I$, let $,I_{1}, I_{2}, I_{3}$ be the incenters of triangles $BIC, CIA, AIB$ respectively. Prove that lines $AI_{1}, BI_{2}, CI_{3}$ are concurrent.

Walkthrough: 

  • Note that $\angle ABI_3= B/2=\angle I_1BC.$ Similarly we get $\angle I_1CB=C/2=\angle I_2CA,~~\angle BAI_3=\angle CAI_2.$
  • Now apply jacobi and we are done


Apart from that CAMP started! We had Hanabi night, where we got 20/25, which I feel is quite good at least for beginners. 

And then LIMIT results came out. In subjective I got 21/120. I was sad since I thought I could have got more marks. I might send my sols here too, and maybe someone can open grade here :O.

Sad note: My mom decreased my net time to 9pm :(, earlier it was 11pm.

Anyways, hope you enjoyed this post!

Sunaina💜



Comments

Post a Comment

Popular posts from this blog

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots ...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...

IMO Shortlist 2021 C1

 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\forall x,y\in T,(x,y)=d,$ where $d$ is constant. Fix a random element $a$. Note that $(x,a)|a$. So $(x,a)\le a$.Since there are infinite elements and finite many possibilities for the gcd (atmost $a$). So $\exists$ set $T$ which is infinite such that $\forall b_1,b_2\in T$ $$(a,b_1)=(a,b_2)=d.$$ Note that if $(b_1,b_2)\ne d$ then we get a contradiction as we get a set satisfying the proble...

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam...

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Let's complex bash Part 1

I have to learn complex bash. And almost everyone knows that I am notes taking girl so thought why not make a post on complex bash ( so that I don't get emotionally demotivated lol).😇 There wasn't any need for learning complex bash, but it was in my dream checklist i.e " To learn a bash." And since I am not loaded with exams, I think it's high time to learn Bash and new topics.  Also if anyone from the "anti-bash" community is reading, sorry in advance and R.I.P.  Notes:- 1. Complex numbers are of the form $z=a+ib,$ where $a$ and $b$ are real numbers and $i^2=-1.$ 2. In polar form, $z=r(\cos \theta+~~i\sin\theta)=~~re^{i\theta},$ where $r=~~|z|=~~\sqrt{a^2+b^2},$ which is called the magnitude. 3. Here we used euler's formula i.e $\cos \theta+~~i\sin\theta=~~e^{i\theta}.$ 4. The $\theta $ is called the argument of $z,$ denored $\arg z.$ ( $\theta$ can be considered in $\mod 360$ and it is  measured anti-clockwise). 5. The complex conjugate of $z$ is ...

INMO Scores and Results

Heya! INMO Results are out! Well, I am now a 3 times IMOTCer :D. Very excited to meet every one of you! My INMO score was exactly 26 with a distribution of 17|0|0|0|0|9, which was a fair grading cause after problem 1, I tried problem 6 next. I was hoping for some partials in problem 4 but didn't get any.  I am so so so excited to meet everyone! Can't believe my olympiad journey is going to end soon..  I thought to continue the improvement table I made last year! ( I would still have to add my EGMO performance and also IMO TST performance too) 2018-2019[ grade 8]:  Cleared PRMO, Cleared RMO[ State rank 4], Wrote INMO 2019-2020[ grade 9]:  Cleared PRMO, Cleared RMO[ State topper], Wrote INMO ( but flopped it) 2020-2021[grade 10]:  Cleared IOQM, Cleared INMO [ Through Girl's Quota] 2021-2022[grade 11]:  Wrote EGMO 2022 TST[ Rank 8], Qualified for IOQM part B directly, Cleared IOQM-B ( i.e INMO) [Through general quota],  2022-2023 [grade 12]:  Wrote E...

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I did...

IMO 2023 P2

IMO 2023 P2 Well, IMO 2023 Day 1 problems are out and I thought of trying the geometry problem which was P2.  Problem: Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$. Well, here's my proof, but I would rather call this my rough work tbh. There are comments in the end! Proof Define $A'$ as the antipode of $A$. And redefine $P=A'D\cap (ABC)$. Define $L=SP\cap (PDB)$.  Claim1: $L-B-E$ collinear Proof: Note that $$\angle SCA=\angle SCB-\angle ACB=90-A/2-C.$$ So $$\angle SPA=90-A/2-C\implies \ang...