Skip to main content

Problems done in July

 July was LIOG month. Just LIOG was done, and then we had MMC ( till July 14). SO from the last two weeks, I was doing LIOG only. And I did some non-geo too! Also, I am not adding all the problems I did. A few only in fact. One can go through my apps post ( Jelena_ivanchic)

Here are a few problems and solutions/walkthroughs:

Problem: Let $A_1$ be the intersection of tangent at $A$ to the circumcircle of a triangle $\Delta ABC$ with sideline $BC$. Similarly define $B_1,C_1$. Show, that $A_1,B_1$ and $C_1$ are collinear

Walkthrough: 

  • Use this $\Delta ACA_1\sim \Delta BAA_1.$
  • So we get$$\frac{AC}{BA}=\frac{CA_1}{AA_1}=\frac{AA_1}{BA_1}$$$$ \implies \frac{CA_1}{AA_1}\cdot \frac{AA_1}{BA_1} =\frac{AC^2}{BA^2}$$$$\implies  \frac{AC^2}{BA^2}=\frac{CA_1}{BA_1}. $$Now, apply menelaus on $ABC.$

Problem: Let $\Gamma$ be a circle and let $B$ be a point on a line that is tangent to $\Gamma$ at the point $A$. The line segment $AB$ is rotated about the center of the circle through some angle to the line segment $A’B’$. Prove that $AA’$ passes through the midpoint of $BB’$.

Walkthrough:

Solved with PC and Krutarth.

  • Let $D$ be the midpoint of $BB',$ we get $\angle XAB=\angle XDB,$ hence $XADB$ cyclic.
  • Now by similarity (spiral but let's not bring fancy words), we get $XBB'\sim XAA'$ ( actually isosceles but we don't need that fact).
  • So $\angle  XBB'=\angle  XAA',$ but $\angle XBB'=\angle XAF,$ where $F$ is a point on ray $DA.$



Problem: Given an infinite sequence of numbers $a_1, a_2, a_3,...$ . For each positive integer $k$ there exists a positive integer $t = t(k)$ such that $a_k = a_{k+t} = a_{k+2t} =...$. Is this sequence necessarily periodic? That is, does a positive integer $T$ exist such that $a_k = a_{k+T}$ for each positive integer k?

Walkthrough: No, it’s not necessary.

Here’s the construction:

Let $X$ denote the place of the sequence, for example in sequence $1,2,3,4,\dots $ $1st $ place is $1.$

Then let$$1\rightarrow v_2(x)=0 $$$$2\rightarrow v_2(X)=1 $$$$3\rightarrow v_2(X)=2 $$$$4\rightarrow v_2(X)=3 $$$$5\rightarrow v_2(X)=4$$$$\vdots $$

So the sequence looks like$$1213121412131215 \dots.$$Clearly, it’s not periodic.

Problem: Find all pairs of natural numbers $(m,n)$ bigger than $1$ for which $2^m+3^n$ is the square of the whole number.

Walkthrough: Note that $\mod 3$ gives $m$ is even and $\mod 4$ gives $n$ is even. We get$$2^{2k}= (X^2-3^l)(X^2+3^l)\implies X^2-3^l= 2^a,~~ X^2+3^l=2^b \implies 2^a| 2^b \implies 2^a|2\cdot 3^l| \implies a=0 \text{or} 1$$So $X^2-3^l=1, 2$ but squares are $0,1\mod 3.$

So$$X^2-3^l=1 \mod 3$$Now we will try to solve$$X^2-3^l=1$$

Note that$$X^2-1=(X-1)(X+1)=3^l\implies X-1=3^w,X+1=3^v\implies 3^w|2\implies w=0 \implies X-1=1\implies 2.$$

Clearly, $X=2$ doesn't satisfy. So we don't have any solutions.

Problem: Let $BD$ be a bisector of triangle $ABC$. Points $I_a$, $I_c$ are the incenters of triangles $ABD$, $CBD$ respectively. The line $I_aI_c$ meets $AC$ in point $Q$. Prove that $\angle DBQ = 90^\circ$.

Walkthrough: 

  • Let $F:= I_aI_c \cap BD,~~ J:=BI_a\cap AC,~~ K:=BI_c\cap AC.$
  • Now, we have$$ \angle I_aDI_c=90,~~\angle FDI_a=\angle I_aDA.$$Then we have$$-1=(E,F;I_A,I_C)$$projecting through $B$ on $AC.$ We get$$ -1=(E,F;I_A,I_C)=(E,D;J,K).$$We already have$$\angle JBD=\angle KBD\implies \angle DBE=90.$$

 


Problem: Let $ABC$ be a triangle with incenter $I$, let $,I_{1}, I_{2}, I_{3}$ be the incenters of triangles $BIC, CIA, AIB$ respectively. Prove that lines $AI_{1}, BI_{2}, CI_{3}$ are concurrent.

Walkthrough: 

  • Note that $\angle ABI_3= B/2=\angle I_1BC.$ Similarly we get $\angle I_1CB=C/2=\angle I_2CA,~~\angle BAI_3=\angle CAI_2.$
  • Now apply jacobi and we are done


Apart from that CAMP started! We had Hanabi night, where we got 20/25, which I feel is quite good at least for beginners. 

And then LIMIT results came out. In subjective I got 21/120. I was sad since I thought I could have got more marks. I might send my sols here too, and maybe someone can open grade here :O.

Sad note: My mom decreased my net time to 9pm :(, earlier it was 11pm.

Anyways, hope you enjoyed this post!

Sunaina💜



Comments

Post a Comment

Popular posts from this blog

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam...

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Introduction

  Hey Everyone!! This is my first Blog post. So let me give a brief introduction about myself. I am Sunaina Pati. I love solving Olympiad math problems,  learning crazy astronomical facts , playing hanabi and anti-chess, listening to Kpop , love making diagrams in Geogebra and  teaching other people maths 😊 . I love geometry , number theory and Combinatorics . I am starting this blog to keep myself a bit motivated in doing studies 😎 . Right now, I am planning to write walkthroughs on some of the best problems I tried over the week which can refer for hints 'cause solutions contain some major spoilers and one learns a lot while solving the problem on his own rather than seeing solutions . Also, there will be some reviews about Kpop songs, study techniques, my day to day lifestyles,exam reviews and ofc some non-sense surprises 😂.  I am planning to  try  posting every week on Sundays or Saturdays ( most probably) ! Though there is no guarantee about when I ...

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...

Some problems in Olympiad Graph theory!

Hello there! It has been a long time since I uploaded a post here. I recently took a class at the European Girls' Mathematical Olympiad Training Camp 2024, held at CMI. Here are a few problems that I discussed! My main references were Po-Shen Loh's Graph theory Problem set (2008), Adrian tang's Graph theory problem set (2012) and Warut Suksompong's Graph Cycles and Olympiad Problems Handout and AoPS. I also referred to Evan Chen's Graph theory Otis Problem set for nice problems! Text Book Problems which are decent A connected graph $G$ is said to be $k$-vertex-connected (or $k$-connected) if it has more than $k$ vertices and remains connected whenever fewer than $k$ vertices are removed. Show that every $k$-connected graph of order atleast $2k$ contains a cycle of length at least $2k$. We begin with a lemma. Prove that a graph $G$ of order $n \geq 2k$ is $k$ connected then every 2 disjoint set $V_1$ and $V_2$ of $k$ distinct vertices each, there exist $k$...

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I did...

Let's complex bash Part 1

I have to learn complex bash. And almost everyone knows that I am notes taking girl so thought why not make a post on complex bash ( so that I don't get emotionally demotivated lol).😇 There wasn't any need for learning complex bash, but it was in my dream checklist i.e " To learn a bash." And since I am not loaded with exams, I think it's high time to learn Bash and new topics.  Also if anyone from the "anti-bash" community is reading, sorry in advance and R.I.P.  Notes:- 1. Complex numbers are of the form $z=a+ib,$ where $a$ and $b$ are real numbers and $i^2=-1.$ 2. In polar form, $z=r(\cos \theta+~~i\sin\theta)=~~re^{i\theta},$ where $r=~~|z|=~~\sqrt{a^2+b^2},$ which is called the magnitude. 3. Here we used euler's formula i.e $\cos \theta+~~i\sin\theta=~~e^{i\theta}.$ 4. The $\theta $ is called the argument of $z,$ denored $\arg z.$ ( $\theta$ can be considered in $\mod 360$ and it is  measured anti-clockwise). 5. The complex conjugate of $z$ is ...

IMO 2023 P2

IMO 2023 P2 Well, IMO 2023 Day 1 problems are out and I thought of trying the geometry problem which was P2.  Problem: Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$. Well, here's my proof, but I would rather call this my rough work tbh. There are comments in the end! Proof Define $A'$ as the antipode of $A$. And redefine $P=A'D\cap (ABC)$. Define $L=SP\cap (PDB)$.  Claim1: $L-B-E$ collinear Proof: Note that $$\angle SCA=\angle SCB-\angle ACB=90-A/2-C.$$ So $$\angle SPA=90-A/2-C\implies \ang...

How to prepare for INMO

Since INMO is coming up, it would be nice to write a post about it! A lot of people have been asking me for tips. To people who are visiting this site for the first time, hi! I am Sunaina Pati, an undergrad student at Chennai Mathematical Institute. I was an INMO awardee in 2021,2022,2023. I am also very grateful to be part of the India EGMO 2023 delegation. Thanks to them I got a silver medal!  I think the title of the post might be clickbait for some. What I want to convey is how I would have prepared for INMO if I were to give it again. Anyway, so here are a few tips for people! Practice, practice, practice!! I can not emphasize how important this is. This is the only way you can realise which areas ( that is combinatorics, geometry, number theory, algebra) are your strength and where you need to work on. Try the problems as much as you want, and make sure you use all the ideas you can possibly think of before looking at a hint. So rather than fixing time as a measure to dec...