Skip to main content

Top 10 Problems week#4 (it's late)

Okie!! Fine, I am late by 2 weeks but I was busy in OTIS submissions. And yayy!! I learnt how to use Evan.sty .  These problems are the exercises from a Titu handout in this website . Here's the full magazine , go to page 40's and one can find it :)

So full Titu :P

10th position (IMO shortlist, 1996)Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that $$\frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. $$

Walkthrough: Thanku Rohan Bhaiya 😄

 a.  $$\sum_{cyc} \frac{ab}{a^5+b^5+ab}\le \sum_{cyc}\frac{c}{a+b+c}=1.$$

b. Cross Multiplying, it is enough to show that $$a^2b+ab^2+abc\le a^5c+b^5c+abc . $$

c. Multiply $abc=1$ to each side and use Muirhead.

9th position(RMO, 2006):If $ a,b,c$ are three positive real numbers, prove that $$ \frac {a^{2}+1}{b+c}+\frac {b^{2}+1}{c+a}+\frac {c^{2}+1}{a+b}\ge 3$$

Walkthrough: a. Using Titu, get $$\frac {a^{2}+1}{b+c}+\frac {b^{2}+1}{c+a}+\frac {c^{2}+1}{a+b}\ge \frac{(a+b+c)^2 +9}{4(a+b+c)}+\frac{3}{2}$$

b. Use AM-GM, we get $$\frac{a+b+c}{4} + \frac{9}{4(a+b+c)}\ge \frac{3}{2} $$.

8th position(RMO, 2012) Given real numbers $a, b, c, d, e \ge 1$, prove that 

$$\frac{a^2}{c-1}+\frac{b^2}{d-1}+\frac{c^2}{e-1}+\frac{d^2}{a-1}+\frac{e^2}{b-1} \ge 20$$

Walkthrough: Same as prev problem :P

a. Use AM-GM, we get $$a+b+c+d+e-5 + \frac{25}{a+b+c+d+e-5}\ge 2\cdot 5=10$$.

7th position(IMO, 1995) :  Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc = 1$. Prove that

$$ \frac {1}{a^{3}\left(b + c\right)} + \frac {1}{b^{3}\left(c + a\right)} + \frac {1}{c^{3}\left(a + b\right)}\geq \frac {3}{2}.$$

Walkthrough: a. well this is well known :P, Note that $$ \sum_{cyc} \frac{1}{a^3(b+c)}=\sum_{cyc} \frac{b^2c^2}{a(b+c)}.$$

b. apply titu and use  $ab+ca+bc\ge 3\sqrt[3]{ac\cdot bc\cdot ab}=3.$

6th Position(JMBO, 2003)Let $x, y, z > -1$. Prove that $$ \frac{1+x^2}{1+y+z^2} + \frac{1+y^2}{1+z+x^2} + \frac{1+z^2}{1+x+y^2} \geq 2. $$

Walkthrough: a.Note that $x\le \frac{1+x^2}{2},$

b.apply titu and use $a=1+x^2, b=1+y^2, c=1+z^2$

c. Use $$a^2+b^2+c^2\ge ab+bc+ca\Rightarrow (a+b+c)^2\ge 3(ab+bc+ca)\Rightarrow \frac{4(a+b+c)^2}{6(ab+bc+ca)}\ge. 2$$

5th position(Ireland, 1999): The sum of positive real numbers $ a,b,c,d$ is $ 1$. Prove that:


$$\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a} \ge \frac{1}{2}$$

Walkthrough: a. use titu directly :P

4th position(Moldova, 2007) .Let $w, x, y, z$ be positive real numbers, prove that

$$\sum_{cyc}\frac{w}{x+2y+3z}\ge \frac{2}{3}$$

Walkthrough:Thanku NJOY 

a. Use Titu to get, $$\sum_{cyc} \frac{w}{(x+2y+3z)} =\sum_{cyc} \frac{w^2}{(wx+2wy+3wz)}\ge \frac{(w+x+y+z)^2}{4(wx+xy+xz+wz+wy+yz)}.$$

b.Using AM-GM, Note that $$3(w^2+x^2+y^2+z^2)\ge  2( wx+xy+xz+wz+wy+yz)$$

3rd position(ADMO, 1991)Let $a_1 , a_2 , \dots a_n$ and $b_1 , b_2 , \dots b_n$ be positive numbers with $a_1 +a_2 +\dots+a_n = b_1 + b_2 + \dots+ b_n$ . Prove that

$$ \frac{a_1^2}{a_1+b_1}+\dots+\frac{a_n^2}{a_n+b_n}\ge \frac{a_1 +a_2 +\dots+a_n}{2}$$

Walkthrough: a. this is direct :P

2nd position (St. Petersburg, 1999)Let $x_0>x_1>\dots >x_n$ be real numbers. Prove that $$ x_0+\frac{1}{x_0-x_1}+\frac{1}{x_1-x_2}+\dots+\frac{1}{x_{n-1}-x_n}\ge x_n+2n $$

Walkthrough: check out week 3 blog !! 

1st Position(Balkan, 1984)Let $n \geq 2$ be a positive integer and $a_{1},\ldots , a_{n}$ be positive real numbers such that $a_{1}+...+a_{n}= 1$. Prove that:

$$\frac{a_{1}}{1+a_{2}+\cdots +a_{n}}+\cdots +\frac{a_{n}}{1+a_{1}+a_{2}+\cdots +a_{n-1}}\geq \frac{n}{2n-1}$$

Walkthrough: a. Note that $$\frac{a_{1}}{1+a_{2}+\cdots +a_{n}}+\cdots +\frac{a_{n}}{1+a_{1}+a_{2}+\cdots +a_{n-1}}\ge \frac{a_{1}}{2-a_1}+\dots+\frac{a_n}{1-a_n}.$$

b. Note that $$\frac{a_1}{2-a_i}=-1+2\left(\frac{1^2}{2-a_i}\right) .$$

c. Use Titu :P

So these were my top 10 ! If u want to see the solutions , use this

What are your top 10s ? do write in the comments section (at least write something ! I will be happy to hear your comments ). Follow this blog if you want to see more contest math problems! See you all soon 😊.

Sunaina 💜

Comments

  1. Nice Post!
    BTW drive link is asking for permission... Would be better if you make that public!

    ReplyDelete

Post a Comment

Popular posts from this blog

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots ...

IMO 2023 P2

IMO 2023 P2 Well, IMO 2023 Day 1 problems are out and I thought of trying the geometry problem which was P2.  Problem: Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$. Well, here's my proof, but I would rather call this my rough work tbh. There are comments in the end! Proof Define $A'$ as the antipode of $A$. And redefine $P=A'D\cap (ABC)$. Define $L=SP\cap (PDB)$.  Claim1: $L-B-E$ collinear Proof: Note that $$\angle SCA=\angle SCB-\angle ACB=90-A/2-C.$$ So $$\angle SPA=90-A/2-C\implies \ang...

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam...

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I did...

IMO Shortlist 2021 C1

 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\forall x,y\in T,(x,y)=d,$ where $d$ is constant. Fix a random element $a$. Note that $(x,a)|a$. So $(x,a)\le a$.Since there are infinite elements and finite many possibilities for the gcd (atmost $a$). So $\exists$ set $T$ which is infinite such that $\forall b_1,b_2\in T$ $$(a,b_1)=(a,b_2)=d.$$ Note that if $(b_1,b_2)\ne d$ then we get a contradiction as we get a set satisfying the proble...

Challenging myself? [Jan 15-Jan 27]

Ehh INMO was trash. I think I will get 17/0/0/0-1/3-5/10-14, which is def not good enough for qualifying from 12th grade. Well, I really feel sad but let's not talk about it and focus on EGMO rather.  INMO 2023 P1 Let $S$ be a finite set of positive integers. Assume that there are precisely 2023 ordered pairs $(x,y)$ in $S\times S$ so that the product $xy$ is a perfect square. Prove that one can find at least four distinct elements in $S$ so that none of their pairwise products is a perfect square. I will use Atul's sol, cause it's the exact same as mine.  Proof: Consider the graph $G$ induced by the elements of $S$ and edges being if the products are perfect squares. Note that if $xy = a^2$ and $xz = b^2$, then $yz = \left( \frac{ab}{x} \right)^2$, since its an integer and square of a rational number its a perfect square and so $yz$ is an edge too. So the graph is a bunch of disjoint cliques, say with sizes $c_1, c_2, \cdots, c_k$. Then $\sum_{i=1}^k c_i^2 = 2023$, which ...

Introduction

  Hey Everyone!! This is my first Blog post. So let me give a brief introduction about myself. I am Sunaina Pati. I love solving Olympiad math problems,  learning crazy astronomical facts , playing hanabi and anti-chess, listening to Kpop , love making diagrams in Geogebra and  teaching other people maths 😊 . I love geometry , number theory and Combinatorics . I am starting this blog to keep myself a bit motivated in doing studies 😎 . Right now, I am planning to write walkthroughs on some of the best problems I tried over the week which can refer for hints 'cause solutions contain some major spoilers and one learns a lot while solving the problem on his own rather than seeing solutions . Also, there will be some reviews about Kpop songs, study techniques, my day to day lifestyles,exam reviews and ofc some non-sense surprises 😂.  I am planning to  try  posting every week on Sundays or Saturdays ( most probably) ! Though there is no guarantee about when I ...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...