Skip to main content

Top 10 Problems week#4 (it's late)

Okie!! Fine, I am late by 2 weeks but I was busy in OTIS submissions. And yayy!! I learnt how to use Evan.sty .  These problems are the exercises from a Titu handout in this website . Here's the full magazine , go to page 40's and one can find it :)

So full Titu :P

10th position (IMO shortlist, 1996)Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that $$\frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. $$

Walkthrough: Thanku Rohan Bhaiya 😄

 a.  $$\sum_{cyc} \frac{ab}{a^5+b^5+ab}\le \sum_{cyc}\frac{c}{a+b+c}=1.$$

b. Cross Multiplying, it is enough to show that $$a^2b+ab^2+abc\le a^5c+b^5c+abc . $$

c. Multiply $abc=1$ to each side and use Muirhead.

9th position(RMO, 2006):If $ a,b,c$ are three positive real numbers, prove that $$ \frac {a^{2}+1}{b+c}+\frac {b^{2}+1}{c+a}+\frac {c^{2}+1}{a+b}\ge 3$$

Walkthrough: a. Using Titu, get $$\frac {a^{2}+1}{b+c}+\frac {b^{2}+1}{c+a}+\frac {c^{2}+1}{a+b}\ge \frac{(a+b+c)^2 +9}{4(a+b+c)}+\frac{3}{2}$$

b. Use AM-GM, we get $$\frac{a+b+c}{4} + \frac{9}{4(a+b+c)}\ge \frac{3}{2} $$.

8th position(RMO, 2012) Given real numbers $a, b, c, d, e \ge 1$, prove that 

$$\frac{a^2}{c-1}+\frac{b^2}{d-1}+\frac{c^2}{e-1}+\frac{d^2}{a-1}+\frac{e^2}{b-1} \ge 20$$

Walkthrough: Same as prev problem :P

a. Use AM-GM, we get $$a+b+c+d+e-5 + \frac{25}{a+b+c+d+e-5}\ge 2\cdot 5=10$$.

7th position(IMO, 1995) :  Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc = 1$. Prove that

$$ \frac {1}{a^{3}\left(b + c\right)} + \frac {1}{b^{3}\left(c + a\right)} + \frac {1}{c^{3}\left(a + b\right)}\geq \frac {3}{2}.$$

Walkthrough: a. well this is well known :P, Note that $$ \sum_{cyc} \frac{1}{a^3(b+c)}=\sum_{cyc} \frac{b^2c^2}{a(b+c)}.$$

b. apply titu and use  $ab+ca+bc\ge 3\sqrt[3]{ac\cdot bc\cdot ab}=3.$

6th Position(JMBO, 2003)Let $x, y, z > -1$. Prove that $$ \frac{1+x^2}{1+y+z^2} + \frac{1+y^2}{1+z+x^2} + \frac{1+z^2}{1+x+y^2} \geq 2. $$

Walkthrough: a.Note that $x\le \frac{1+x^2}{2},$

b.apply titu and use $a=1+x^2, b=1+y^2, c=1+z^2$

c. Use $$a^2+b^2+c^2\ge ab+bc+ca\Rightarrow (a+b+c)^2\ge 3(ab+bc+ca)\Rightarrow \frac{4(a+b+c)^2}{6(ab+bc+ca)}\ge. 2$$

5th position(Ireland, 1999): The sum of positive real numbers $ a,b,c,d$ is $ 1$. Prove that:


$$\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a} \ge \frac{1}{2}$$

Walkthrough: a. use titu directly :P

4th position(Moldova, 2007) .Let $w, x, y, z$ be positive real numbers, prove that

$$\sum_{cyc}\frac{w}{x+2y+3z}\ge \frac{2}{3}$$

Walkthrough:Thanku NJOY 

a. Use Titu to get, $$\sum_{cyc} \frac{w}{(x+2y+3z)} =\sum_{cyc} \frac{w^2}{(wx+2wy+3wz)}\ge \frac{(w+x+y+z)^2}{4(wx+xy+xz+wz+wy+yz)}.$$

b.Using AM-GM, Note that $$3(w^2+x^2+y^2+z^2)\ge  2( wx+xy+xz+wz+wy+yz)$$

3rd position(ADMO, 1991)Let $a_1 , a_2 , \dots a_n$ and $b_1 , b_2 , \dots b_n$ be positive numbers with $a_1 +a_2 +\dots+a_n = b_1 + b_2 + \dots+ b_n$ . Prove that

$$ \frac{a_1^2}{a_1+b_1}+\dots+\frac{a_n^2}{a_n+b_n}\ge \frac{a_1 +a_2 +\dots+a_n}{2}$$

Walkthrough: a. this is direct :P

2nd position (St. Petersburg, 1999)Let $x_0>x_1>\dots >x_n$ be real numbers. Prove that $$ x_0+\frac{1}{x_0-x_1}+\frac{1}{x_1-x_2}+\dots+\frac{1}{x_{n-1}-x_n}\ge x_n+2n $$

Walkthrough: check out week 3 blog !! 

1st Position(Balkan, 1984)Let $n \geq 2$ be a positive integer and $a_{1},\ldots , a_{n}$ be positive real numbers such that $a_{1}+...+a_{n}= 1$. Prove that:

$$\frac{a_{1}}{1+a_{2}+\cdots +a_{n}}+\cdots +\frac{a_{n}}{1+a_{1}+a_{2}+\cdots +a_{n-1}}\geq \frac{n}{2n-1}$$

Walkthrough: a. Note that $$\frac{a_{1}}{1+a_{2}+\cdots +a_{n}}+\cdots +\frac{a_{n}}{1+a_{1}+a_{2}+\cdots +a_{n-1}}\ge \frac{a_{1}}{2-a_1}+\dots+\frac{a_n}{1-a_n}.$$

b. Note that $$\frac{a_1}{2-a_i}=-1+2\left(\frac{1^2}{2-a_i}\right) .$$

c. Use Titu :P

So these were my top 10 ! If u want to see the solutions , use this

What are your top 10s ? do write in the comments section (at least write something ! I will be happy to hear your comments ). Follow this blog if you want to see more contest math problems! See you all soon 😊.

Sunaina 💜

Comments

  1. Nice Post!
    BTW drive link is asking for permission... Would be better if you make that public!

    ReplyDelete

Post a Comment

Popular posts from this blog

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam...

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots ...

IMO Shortlist 2021 C1

 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\forall x,y\in T,(x,y)=d,$ where $d$ is constant. Fix a random element $a$. Note that $(x,a)|a$. So $(x,a)\le a$.Since there are infinite elements and finite many possibilities for the gcd (atmost $a$). So $\exists$ set $T$ which is infinite such that $\forall b_1,b_2\in T$ $$(a,b_1)=(a,b_2)=d.$$ Note that if $(b_1,b_2)\ne d$ then we get a contradiction as we get a set satisfying the proble...

Some Geometry Problems for everyone to try!

 These problems are INMO~ish level. So trying this would be a good practice for INMO!  Let $ABCD$ be a quadrilateral. Let $M,N,P,Q$ be the midpoints of sides $AB,BC,CD,DA$. Prove that $MNPQ$ is a parallelogram. Consider $\Delta ABD$ and $\Delta BDC$ .Note that $NP||BD||MQ$. Similarly, $NM||AC||PQ$. Hence the parallelogram. In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$. Note that $\Delta ADB\sim \Delta CDA$. So by similarity, we have $$\frac{AD}{BD}=\frac{CD}{AD}.$$ In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$. Let $D\in CA$, such that $AD = AB$.Note that $BD||AS$. So by the Thales’ Proportionality Theorem, we are done! Given $\Delta ABC$, construct equilateral triangles $\Delta BCD,\Delta CAE,\Delta ABF$ outside of $\Delta ABC$. Prove that $AD=BE=CF$. This is just congruence. N...

Number Theory Revise part 1

I thought to revise David Burton and try out some problems which I didn't do. It's been almost 2 years since I touched that book so let's see! Also, this set of problems/notes is quite weird since it's actually a memory lane. You will get to know on your own! I started with proving a problem, remembered another problem and then another and so on! It was quite fun cause all these questions were the ones I really wanted to solve! And this is part1 or else the post would be too long. Problem1: Prove that for $n\ge 1$  $$\binom{n}{r}<\binom{n}{r+1}$$ iff $0\le r\le \frac{n-1}{2}$ Proof: We show that $\binom{n}{r}<\binom{n}{r+1}$ for $0\le r\le \frac{n-1}{2}$ and use the fact that $$\binom{n}{n-r}=\binom{n}{r}$$ Note that $\binom{n}{r}= \frac{n!}{r!(n-r)!}, \binom{n}{r+1}=\frac{n!}{(r+1)!(n-r-1)!}$  Comparing, it's enough to show that $$\frac{1}{n-r}<\frac{1}{r+1}\text{ or show } n-r>r+1$$ which is true as $0\le r\le \frac{n-1}{2}$ Problem2: Show that the exp...

Problems with meeting people!

Yeah, I did some problems and here are a few of them! I hope you guys try them! Putnam, 2018 B3 Find all positive integers $n < 10^{100}$ for which simultaneously $n$ divides $2^n$, $n-1$ divides $2^n - 1$, and $n-2$ divides $2^n - 2$. Proof We have $$n|2^n\implies n=2^a\implies 2^a-1|2^n-1\implies a|n\implies a=2^b$$ $$\implies 2^{2^b}-2|2^{2^a}-2\implies 2^b-1|2^a-1\implies b|a\implies b=2^c.$$ Then simply bounding. USAMO 1987 Determine all solutions in non-zero integers $a$ and $b$ of the equation $$(a^2+b)(a+b^2) = (a-b)^3.$$ Proof We get $$ 2b^2+(a^2-3a)b+(a+3a^2)=0\implies b = \frac{3a-a^2\pm\sqrt{a^4-6a^3-15a^2-8a}}{4}$$ $$\implies a^4-6a^3-15a^2-8a=a(a-8)(a+1)^2\text{ a perfect square}$$ $$\implies a(a-8)=k^2\implies a^2-8a-k^2=0\implies \implies a=\frac{8\pm\sqrt{64+4k^2}}{2}=4\pm\sqrt{16+k^2}. $$ $$ 16+k^2=m^2\implies (m-k)(m+k)=16.$$ Now just bash. USAMO 1988 Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1...

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...

Let's complex bash Part 1

I have to learn complex bash. And almost everyone knows that I am notes taking girl so thought why not make a post on complex bash ( so that I don't get emotionally demotivated lol).😇 There wasn't any need for learning complex bash, but it was in my dream checklist i.e " To learn a bash." And since I am not loaded with exams, I think it's high time to learn Bash and new topics.  Also if anyone from the "anti-bash" community is reading, sorry in advance and R.I.P.  Notes:- 1. Complex numbers are of the form $z=a+ib,$ where $a$ and $b$ are real numbers and $i^2=-1.$ 2. In polar form, $z=r(\cos \theta+~~i\sin\theta)=~~re^{i\theta},$ where $r=~~|z|=~~\sqrt{a^2+b^2},$ which is called the magnitude. 3. Here we used euler's formula i.e $\cos \theta+~~i\sin\theta=~~e^{i\theta}.$ 4. The $\theta $ is called the argument of $z,$ denored $\arg z.$ ( $\theta$ can be considered in $\mod 360$ and it is  measured anti-clockwise). 5. The complex conjugate of $z$ is ...