Skip to main content

Geos are definitely cool

So, I  did G1s. Here are solutions to a few of them.
I think they were really INMO level. Not much theory was needed. It's true that almost everything was angle chase-able. Although $2017$ G$1$ was an exception, as it had pappus. But the rest were nice. The hardest would also be $2017$ G$1$. It's not hard-hard, but hard in terms of theoretically.

The second hardest would probably be $2018$ G$1.$  Anand had proof with no words. I will add the image here. One should definitely check! 

Then, the third hardest would probably be $2009$ G$1.$ The right construction was hard for me to guess. Then $2005$ G1. And then $2007$G$1,$ since the right use of similarities were required.  

Also I, fortunately(?) didn't use any ggb, so I would recommend making your own diagrams. 

And before starting, I would like to thanks every one of you who comes here almost daily and views this blog! I hope this blog is helpful to you in some way. Yeah, we crossed 6k views! 💖


So here are 5+1 problems, which I would say are perfect for INMO!


2019 G1: Let $ABC$ be a triangle. Circle $\Gamma$ passes through $A$, meets segments $AB$ and $AC$ again at points $D$ and $E$ respectively and intersects segment $BC$ at $F$ and $G$ such that $F$ lies between $B$ and $G$. The tangent to circle $BDF$ at $F$ and the tangent to circle $CEG$ at $G$ meet at point $T$. Suppose that points $A$ and $T$ are distinct. Prove that line $AT$ is parallel to $BC$.

Proof: 
  •  Redefine $FF\cap (ADFGE)=T.$
  •  Then we get $\angle ABF=\angle DFT= 180-\angle TAD\implies AT||BC$
  •  Then we show that $TG$ is tangent to $(GEC),$ then $\angle TGE=\angle TAE=\angle ACG.$
2015 G1: Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

Proof: 
  • Draw ||gm $IAHA'$
  •  To show that $IJ=IA'$
  • Note that $CHBM$ cyclic and $\angle IGC=\angle IJC=90-C.$
  • But $\angle HAA'= \angle AAI'=90-C.$
  •  So $IJ=IA'=AH.$
2016 G1: Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.

Proof:
  •  Redefine $M$ as a point such that $CDEM$ is ||gm. We let $\angle MCD=\theta $
  •   So we get $CM=DF=EA$ and $EM=CD=DA.$ Hence $DEMA$ is isosceles trapezoid. Hence $DM=EA.$ 
  •    So we get $\angle DME=180-\angle CMD-\angle EMA=\theta.$ 
  •     Now, we have $$\angle EMF=\angle EMA=\theta =\angle MAB \implies ME||BA $$
  •    So $$\angle \theta =\angle EBA=\angle BEM.$$
  •      So if we define $Z=BE\cap MA$ then $\angle BZA=180-2\theta \implies Z=F\implies B-F-E$
  •     Hence $MF=FE$ and $\Delta MEF$ congruent to $\delta MED.$ 
  •     Hence $CM=DE=MF$Hence $M$ is the midpoint of $CF.$
2012 G1: Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$

Proof: 
  • Note that $ AP^2=AF\cdot AB=AH\cdot AD=AE\cdot AC=AR^2.$ Note that $\angle BQD=C-X=\angle PAF\implies (AQPF).$
  •     We use inversion at $A$ with radius $AH\cdot AD$ so $P\rightarrow P,~~R\rightarrow R,~~F\rightarrow B,~~H\rightarrow D,~~E\rightarrow C.$
  •     Define $PB\cap FD\Leftrightarrow (PFA)\cap (ABH).$
  •      So let $Q'= (PFA)\cap (ABH)$
  •   Note that $C=180-\angle AHB=\angle AQ'B\implies \angle AQ'B=C.$
  •     note that $\angle ARF=\angle APF=\angle FQ'A=X$ So we have $FQ'B=C-X$
  •      Now note that $C-X=\angle PAF=\angle PQ'F.$
  •      So $Q'-P-B\implies Q'=Q.$
  •   So $AQ=AR=AP.$

2001 G1: In the plane we are given two circles intersecting at $ X$ and $ Y$. Prove that there exist four points with the following property:
(P) For every circle touching the two given circles at $ A$ and $ B$, and meeting the line $ XY$ at $ C$ and $ D$, each of the lines $ AC$, $ AD$, $ BC$, $ BD$ passes through one of these points.

Proof:  
  •  Define $AD\cap (O_1)=G,~~BD\cap (O_2)=H,~~AC\cap (O_1)=E,~~BC\cap (O_2)=F$
  •    Note that $\angle GAE=\angle GAD,~~\angle EO_1A=\angle AO_3C\implies \angle EGA=\angle ADC\implies GE||XY$
  •     Similarly we get HF||XY, so $HF||XY||GE.$
  •      by pop we have $ABGH,~~ABEF$ cyclic.
  •      Also we have now $GAH\sim DAC$ and so.
  •      Now we angle chase, we get $$\angle EFB=\angle BAC=\angle BDC=\angle BHD\implies EF\text{~tangent to~~}(O_2).$$
  •     Similar for others too, so we get $EF,GH$ as the common tangent. Hence fixed.
And the 2018 G1.

2018 G1: Let $\Gamma$ be the circumcircle of acute triangle $ABC$. Points $D$ and $E$ are on segments $AB$ and $AC$ respectively such that $AD = AE$. The perpendicular bisectors of $BD$ and $CE$ intersect minor arcs $AB$ and $AC$ of $\Gamma$ at points $F$ and $G$ respectively. Prove that lines $DE$ and $FG$ are either parallel or they are the same line.

Anand is really the best


So that's it for this week's post, hope you have a great week! And see you all in next week's post!
Also, do comment if you want a non-geo or geo post. I would probably prefer a non-geo, number-theory post. If geo is requested then I will post the solutions to another 5 of the ISL G1s.

On a side note, I have opened " Anand is the best Fanclub" :P.

Hope you enjoyed it. See you all soon 
Sunaina 💜


Comments

  1. This comment has been removed by the author.

    ReplyDelete
  2. Awesome geos. 2017 G1 was beautiful. 2018 G1 proof without words was really cool. I request you to make a geo post part 2. If you do non-geo, please post some combis.

    ReplyDelete
    Replies
    1. Sure! Regarding combos, I am doing Number theory, but I can try to add nice combo-nt games ( If I am able to solve it). So after I am done with NT, then it's full combo. Also I realised, I don't have a full combo post till now!

      P.S. Thanks for commenting, this is probably the first comment which actually answered the question I asked at the end. It made me quite happy!

      Delete
    2. Yeah, combo-nt games would be a nice choice. If you're doing geos currently, you may make a geo post part 2, after that you may try out combo-nt. That would be really nice.

      Delete
  3. Pro yaar gawd yaar
    You synthetic solved 2016 G1
    I trigbashed the hardest part

    ReplyDelete
  4. 2019 G1 was so disappointing smh lol

    ReplyDelete
    Replies
    1. Yeah kindo of agreed. Undoubtedly the easiest G1!

      Delete
    2. I pretty much found 2011 G1 easy! It's like the idea is pretty common :P

      Delete

Post a Comment

Popular posts from this blog

My experiences at EGMO, IMOTC and PROMYS experience

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Anyways, here's my EGMO PDC, EGMO, IMOTC and PROMYS experience. Yes, a lot of stuff. My EGMO experience is a lot and I wrote a lot of details, IMOTC and PROMYS is just a few paras. Oh to those, who don't know me or are reading for the first time. I am Sunaina Pati. I was IND2 at EGMO 2023 which was held in Slovenia. I was also invited to the IMOTC or International Mathematical Olympiad Training Cam...

Geometry ( Finally!!!)

 This is just such an unfair blog.  Like if one goes through this blog, one can notice how dominated  Algebra is!! Like 6 out of 9 blog post is Algebra dominated -_- Where as I am not a fan of Algebra, compared to other genres of Olympiad Math(as of now). And this was just injustice for Synthetic Geo. So this time , go geo!!!!!!!!!!!  These problems are randomly from A Beautiful Journey through Olympiad Geometry.  Also perhaps I will post geo after March, because I am studying combi.  Problem:  Let $ABC$ be an acute triangle where $\angle BAC = 60^{\circ}$. Prove that if the Euler’s line of $\triangle ABC$ intersects $AB$ and $AC$ at $D$ and $E$, respectively, then $\triangle ADE$ is equilateral. Solution:  Since $\angle A=60^{\circ}$ , we get $AH=2R\cos A=R=AO$. So $\angle EHA=\angle DOA.$ Also it's well known that $H$ and $O $ isogonal conjugates.$\angle OAD =\angle EAH.$ By $ASA$ congruence, we get $AE=AD.$ Hence $\triangle ADE$ is equilateral....

Just spam combo problems cause why not

This post is mainly for Rohan Bhaiya. He gave me/EGMO contestants a lot and lots of problems. Here are solutions to a very few of them.  To Rohan Bhaiya: I just wrote the sketch/proofs here cause why not :P. I did a few more extra problems so yeah.  I sort of sorted the problems into different sub-areas, but it's just better to try all of them! I did try some more combo problems outside this but I tried them in my tablet and worked there itself. So latexing was tough. Algorithms  "Just find the algorithm" they said and they died.  References:  Algorithms Pset by Abhay Bestrapalli Algorithms by Cody Johnson Problem1: Suppose the positive integer $n$ is odd. First Al writes the numbers $1, 2,\dots, 2n$ on the blackboard. Then he picks any two numbers $a, b$ erases them, and writes, instead, $|a - b|$. Prove that an odd number will remain at the end.  Proof: Well, we go $\mod 2$. Note that $$|a-b|\equiv a+b\mod 2\implies \text{ the final number is }1+2+\dots ...

IMO Shortlist 2021 C1

 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\forall x,y\in T,(x,y)=d,$ where $d$ is constant. Fix a random element $a$. Note that $(x,a)|a$. So $(x,a)\le a$.Since there are infinite elements and finite many possibilities for the gcd (atmost $a$). So $\exists$ set $T$ which is infinite such that $\forall b_1,b_2\in T$ $$(a,b_1)=(a,b_2)=d.$$ Note that if $(b_1,b_2)\ne d$ then we get a contradiction as we get a set satisfying the proble...

Orders and Primitive roots

 Theory  We know what Fermat's little theorem states. If $p$ is a prime number, then for any integer $a$, the number $a^p − a$ is an integer multiple of $p$. In the notation of modular arithmetic, this is expressed as \[a^{p}\equiv a{\pmod {p}}.\] So, essentially, for every $(a,m)=1$, ${a}^{\phi (m)}\equiv 1 \pmod {m}$. But $\phi (m)$ isn't necessarily the smallest exponent. For example, we know $4^{12}\equiv 1\mod 13$ but so is $4^6$. So, we care about the "smallest" exponent $d$ such that $a^d\equiv 1\mod m$ given $(a,m)=1$.  Orders Given a prime $p$, the order of an integer $a$ modulo $p$, $p\nmid a$, is the smallest positive integer $d$, such that $a^d \equiv 1 \pmod p$. This is denoted $\text{ord}_p(a) = d$. If $p$ is a primes and $p\nmid a$, let $d$ be order of $a$ mod $p$. Then $a^n\equiv 1\pmod p\implies d|n$. Let $n=pd+r, r\ll d$. Which implies $a^r\equiv 1\pmod p.$ But $d$ is the smallest natural number. So $r=0$. So $d|n$. Show that $n$ divid...

Problems I did this week [Jan8-Jan14]

Yeyy!! I am being so consistent with my posts~~ Here are a few problems I did the past week and yeah INMO going to happen soon :) All the best to everyone who is writing!  I wont be trying any new problems and will simply revise stuffs :) Some problems here are hard. Try them yourself and yeah~~Solutions (with sources) are given at the end! Problems discussed in the blog post Problem1: Let $ABC$ be a triangle whose incircle $\omega$ touches sides $BC, CA, AB$ at $D,E,F$ respectively. Let $H$ be the orthocenter of $DEF$ and let altitude $DH$ intersect $\omega$ again at $P$ and $EF$ intersect $BC$ at $L$. Let the circumcircle of $BPC$ intersect $\omega$ again at $X$. Prove that points $L,D,H,X$ are concyclic. Problem 2: Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ= 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ ...

Some Geometry Problems for everyone to try!

 These problems are INMO~ish level. So trying this would be a good practice for INMO!  Let $ABCD$ be a quadrilateral. Let $M,N,P,Q$ be the midpoints of sides $AB,BC,CD,DA$. Prove that $MNPQ$ is a parallelogram. Consider $\Delta ABD$ and $\Delta BDC$ .Note that $NP||BD||MQ$. Similarly, $NM||AC||PQ$. Hence the parallelogram. In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$. Note that $\Delta ADB\sim \Delta CDA$. So by similarity, we have $$\frac{AD}{BD}=\frac{CD}{AD}.$$ In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$. Let $D\in CA$, such that $AD = AB$.Note that $BD||AS$. So by the Thales’ Proportionality Theorem, we are done! Given $\Delta ABC$, construct equilateral triangles $\Delta BCD,\Delta CAE,\Delta ABF$ outside of $\Delta ABC$. Prove that $AD=BE=CF$. This is just congruence. N...

Problems with meeting people!

Yeah, I did some problems and here are a few of them! I hope you guys try them! Putnam, 2018 B3 Find all positive integers $n < 10^{100}$ for which simultaneously $n$ divides $2^n$, $n-1$ divides $2^n - 1$, and $n-2$ divides $2^n - 2$. Proof We have $$n|2^n\implies n=2^a\implies 2^a-1|2^n-1\implies a|n\implies a=2^b$$ $$\implies 2^{2^b}-2|2^{2^a}-2\implies 2^b-1|2^a-1\implies b|a\implies b=2^c.$$ Then simply bounding. USAMO 1987 Determine all solutions in non-zero integers $a$ and $b$ of the equation $$(a^2+b)(a+b^2) = (a-b)^3.$$ Proof We get $$ 2b^2+(a^2-3a)b+(a+3a^2)=0\implies b = \frac{3a-a^2\pm\sqrt{a^4-6a^3-15a^2-8a}}{4}$$ $$\implies a^4-6a^3-15a^2-8a=a(a-8)(a+1)^2\text{ a perfect square}$$ $$\implies a(a-8)=k^2\implies a^2-8a-k^2=0\implies \implies a=\frac{8\pm\sqrt{64+4k^2}}{2}=4\pm\sqrt{16+k^2}. $$ $$ 16+k^2=m^2\implies (m-k)(m+k)=16.$$ Now just bash. USAMO 1988 Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1...

Let's complex bash Part 1

I have to learn complex bash. And almost everyone knows that I am notes taking girl so thought why not make a post on complex bash ( so that I don't get emotionally demotivated lol).😇 There wasn't any need for learning complex bash, but it was in my dream checklist i.e " To learn a bash." And since I am not loaded with exams, I think it's high time to learn Bash and new topics.  Also if anyone from the "anti-bash" community is reading, sorry in advance and R.I.P.  Notes:- 1. Complex numbers are of the form $z=a+ib,$ where $a$ and $b$ are real numbers and $i^2=-1.$ 2. In polar form, $z=r(\cos \theta+~~i\sin\theta)=~~re^{i\theta},$ where $r=~~|z|=~~\sqrt{a^2+b^2},$ which is called the magnitude. 3. Here we used euler's formula i.e $\cos \theta+~~i\sin\theta=~~e^{i\theta}.$ 4. The $\theta $ is called the argument of $z,$ denored $\arg z.$ ( $\theta$ can be considered in $\mod 360$ and it is  measured anti-clockwise). 5. The complex conjugate of $z$ is ...

Solving Random ISLs And Sharygin Solutions! And INMO happened!!

Some of the ISLs I did before INMO :P  [2005 G3]:  Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$ Solution: Note that $$\Delta LDK \sim \Delta XBK$$ and $$\Delta ADY\sim \Delta XCY.$$ So we have $$\frac{BK}{DY}=\frac{XK}{LY}$$ and $$\frac{DY}{CY}=\frac{AD}{XC}=\frac{AY}{XY}.$$ Hence $$\frac{BK}{CY}=\frac{AD}{XC}\times \frac{XK}{LY}\implies \frac{BK}{BC}=\frac{CY}{XC}\times \frac{XK}{LY}=\frac{AB}{BC}\times \frac{XK}{LY} $$ $$\frac{AB}{LY}\times \frac{XK}{BK}=\frac{AB}{LY}\times \frac{LY}{DY}=\frac{AB}{DL}$$ $$\implies \Delta CBK\sim \Delta LDK$$ And we are done. We get that $$\angle KCL=360-(\angle ACB+\angle DKC+\angle BCK)=\angle DAB/2 +180-\angle DAB=180-\angle DAB/2$$ Motivation: I took a hint on this. I had other angles but I did...